ترغب بنشر مسار تعليمي؟ اضغط هنا

Model order reduction for stochastic dynamical systems with continuous symmetries

170   0   0.0 ( 0 )
 نشر من قبل Saviz Mowlavi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stochastic dynamical systems with continuous symmetries arise commonly in nature and often give rise to coherent spatio-temporal patterns. However, because of their random locations, these patterns are not well captured by current order reduction techniques and a large number of modes is typically necessary for an accurate solution. In this work, we introduce a new methodology for efficient order reduction of such systems by combining (i) the method of slices, a symmetry reduction tool, with (ii) any standard order reduction technique, resulting in efficient mixed symmetry-dimensionality reduction schemes. In particular, using the Dynamically Orthogonal (DO) equations in the second step, we obtain a novel nonlinear Symmetry-reduced Dynamically Orthogonal (SDO) scheme. We demonstrate the performance of the SDO scheme on stochastic solutions of the 1D Korteweg-de Vries and 2D Navier-Stokes equations.



قيم البحث

اقرأ أيضاً

This short review describes mathematical techniques for statistical analysis and prediction in dynamical systems. Two problems are discussed, namely (i) the supervised learning problem of forecasting the time evolution of an observable under potentia lly incomplete observations at forecast initialization; and (ii) the unsupervised learning problem of identification of observables of the system with a coherent dynamical evolution. We discuss how ideas from from operator-theoretic ergodic theory combined with statistical learning theory provide an effective route to address these problems, leading to methods well-adapted to handle nonlinear dynamics, with convergence guarantees as the amount of training data increases.
We investigate the capability of neural network-based model order reduction, i.e., autoencoder (AE), for fluid flows. As an example model, an AE which comprises of a convolutional neural network and multi-layer perceptrons is considered in this study . The AE model is assessed with four canonical fluid flows, namely: (1) two-dimensional cylinder wake, (2) its transient process, (3) NOAA sea surface temperature, and (4) $y-z$ sectional field of turbulent channel flow, in terms of a number of latent modes, a choice of nonlinear activation functions, and a number of weights contained in the AE model. We find that the AE models are sensitive against the choice of the aforementioned parameters depending on the target flows. Finally, we foresee the extensional applications and perspectives of machine learning based order reduction for numerical and experimental studies in fluid dynamics community.
Network systems consist of subsystems and their interconnections, and provide a powerful framework for analysis, modeling and control of complex systems. However, subsystems may have high-dimensional dynamics, and the amount and nature of interconnec tions may also be of high complexity. Therefore, it is relevant to study reduction methods for network systems. An overview on reduction methods for both the topological (interconnection) structure of the network and the dynamics of the nodes, while preserving structural properties of the network, and taking a control systems perspective, is provided. First topological complexity reduction methods based on graph clustering and aggregation are reviewed, producing a reduced-order network model. Second, reduction of the nodal dynamics is considered by using extensions of classical methods, while preserving the stability and synchronization properties. Finally, a structure-preserving generalized balancing method for simplifying simultaneously the topological structure and the order of the nodal dynamics is treated.
We study the non-Markovian random continuous processes described by the Mori-Zwanzig equation. As a starting point, we use the Markovian Gaussian Ornstein-Uhlenbeck process and introduce an integral memory term depending on the past of the process in to expression for the higher-order transition probability function and stochastic differential equation. We show that the proposed processes can be considered as continuous-time interpolations of discrete-time higher-order autoregressive sequences. An equation connecting the memory function (the kernel of integral term) and the two-point correlation function is obtained. A condition for stationarity of the process is established. We suggest a method to generate stationary continuous stochastic processes with prescribed pair correlation function. As illustration, some examples of numerical simulation of the processes with non-local memory are presented.
We study the problem of predicting rare critical transition events for a class of slow-fast nonlinear dynamical systems. The state of the system of interest is described by a slow process, whereas a faster process drives its evolution and induces cri tical transitions. By taking advantage of recent advances in reservoir computing, we present a data-driven method to predict the future evolution of the state. We show that our method is capable of predicting a critical transition event at least several numerical time steps in advance. We demonstrate the success as well as the limitations of our method using numerical experiments on three examples of systems, ranging from low dimensional to high dimensional. We discuss the mathematical and broader implications of our results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا