ترغب بنشر مسار تعليمي؟ اضغط هنا

Broadband ultra-thin acoustic metasurface absorber

264   0   0.0 ( 0 )
 نشر من قبل Badreddine Assouar
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically and experimentally propose two designs of broadband low-frequency acoustic metasurface absorbers (Sample I/Sample II) for the frequency ranges of 458Hz~968Hz and 231Hz~491Hz (larger than 1 octave), with absorption larger than 0.8, and having the ultra-thin thickness of 5.2cm and 10.4cm respectively ({lambda}/15 for the lowest working frequency and {lambda}/7.5 for the highest frequency). The designed supercell consists of 16 different unit cells corresponding to 16 eigen frequencies for resonant absorptions. The coupling of multiple resonances leads to broadband absorption effect in the full range of the targeted frequency spectrum. In particular, we propose to combine gradient-change channel and coiled structure to achieve simultaneous impedance matching and minimal occupied space, leading to the ultra-thin thickness of the metasurface absorbers. Our conceived ultra-thin low-frequency broadband absorbers may lead to pragmatic implementations and applications in noise control field.

قيم البحث

اقرأ أيضاً

91 - Haozhen Zou , Pan Li , 2019
This paper describes a new kind of acoustic metasurface with multiply resonant units, which have previously been used to induce multiple resonances and effectively produce negative mass density and bulk/shear moduli. The proposed acoustic metasurface can be constructed using real materials and does not rely on an ideal rigid material. Therefore, it can work well in a water background. The thickness of the acoustic metasurface is about two orders of magnitude smaller than the acoustic wavelength in water. The design of a unit group is proposed to avoid the phase discretization becoming too fine in such a long-wavelength condition. We demonstrate that the proposed acoustic metasurface achieves good performance in anomalous reflection, focusing, and carpet cloaking.
137 - Jun Ji , Dongting Li , Yong Li 2020
A broadband sound absorption attained by a deep-subwavelength structure is of great interest to the noise control community especially for extremely low frequencies (20-100 Hz) in room acoustics. Coupling multiple different resonant unit cells has be en an effective strategy to achieve a broadband sound absorption. In this paper, we report on an analytical, numerical and experimental study of a low-frequency broadband (50-63 Hz, one third octave band), high absorption (average absorption coefficient around 93%), near-omnidirectional (0{deg}-75{deg}) acoustic metasurface absorber composed of 4 coupled unit cells at a thickness of 15.4 cm (1/45 of the wavelength at 50 Hz). The absorption by such a deep-subwavelength structure occurs due to a strong coupling between unit cells, which is realized by carefully engineering geometric parameters of each unit cell, especially the judicious assignment of lateral size to each unit cell. To further broaden the bandwidth (50-100 Hz, one octave band), a design with 19 unit cells coupled in a supercell is analytically studied to achieve an average absorption coefficient of 85% for a wide angle range (0{deg}-75{deg}) at a thickness of 20 cm (1/34 of wavelength at 50 Hz). Two additional degrees of freedom, the lateral size of supercell and the number of unit cells in the supercell, are demonstrated to facilitate such a causally optimal design which is close to the ideally causal optimality. The proposed design methodology may solve the long-standing issue for low frequency absorption in room acoustics.
We propose herein a method of material-structure integrated design for broadband absorption of dielectric metamaterial, which is achieved by combination of genetic algorithm and simulation platform. A multi-layered metamaterial absorber with an ultra -broadband absorption from 5.3 to 18 GHz (a relative bandwidth of as high as 109%) is realized numerically and experimentally. In addition, simulated results demonstrate the proposed metamaterial exhibits good incident angle and polarization tolerance, which also are significant criteria for practical applications. By investigating the working principle with theoretical calculation and numerical simulation, it can be found that merging of multiple resonance modes encompassing quarter-wavelength interference cancellation, spoof surface plasmon polariton mode, dielectric resonance mode and grating mode is responsible for a remarkable ultra-broadband absorption. Analysis of respective contribution of material and structure indicates that either of them plays an indispensable role in activating different resonance modes, and symphony of material and structure is essential to afford desirable target performance. The material-structure integrated design philosophy highlights the superiority of coupling material and structure and provides an effective comprehensive optimization strategy for dielectric metamaterials.
A microwave ultra-broadband polarization-independent metamaterial absorber is demonstrated. It is composed of a periodic array of metal-dielectric multilayered quadrangular frustum pyramids. These pyramids possess resonant absorption modes at multi-f requencies, of which the overlapping leads to the total absorption of the incident wave over an ultra-wide spectral band. The experimental absorption at normal incidence is above 90% in the frequency range of 7.8-14.7GHz, and the absorption is kept large when the incident angle is smaller than 60 degrees. The experimental results agree well with the numerical simulation.
77 - Shubo Wang , Bo Hou , 2018
We propose to use logarithmic spiral resonators for efficient absorption of microwaves. By combining their scale invariant geometries and Fabry-Perot-type resonances stemming from the fundamental TM mode, we realize a microwave metasurface with broad band absorption performance. The metasurface comprises logarithmic spiral resonators backed with a metallic surface and it can absorb >95% of incident microwave energy within the frequency range of 6 GHz - 37 GHz. We discuss the physics underlying the broadband absorption and the crucial role of vortex energy flow. The study opens a new direction of electromagnetic wave absorption by employing the scale invariance of Maxwell equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا