ﻻ يوجد ملخص باللغة العربية
RGBT tracking has attracted increasing attention since RGB and thermal infrared data have strong complementary advantages, which could make trackers all-day and all-weather work. However, how to effectively represent RGBT data for visual tracking remains unstudied well. Existing works usually focus on extracting modality-shared or modality-specific information, but the potentials of these two cues are not well explored and exploited in RGBT tracking. In this paper, we propose a novel multi-adapter network to jointly perform modality-shared, modality-specific and instance-aware target representation learning for RGBT tracking. To this end, we design three kinds of adapters within an end-to-end deep learning framework. In specific, we use the modified VGG-M as the generality adapter to extract the modality-shared target representations.To extract the modality-specific features while reducing the computational complexity, we design a modality adapter, which adds a small block to the generality adapter in each layer and each modality in a parallel manner. Such a design could learn multilevel modality-specific representations with a modest number of parameters as the vast majority of parameters are shared with the generality adapter. We also design instance adapter to capture the appearance properties and temporal variations of a certain target. Moreover, to enhance the shared and specific features, we employ the loss of multiple kernel maximum mean discrepancy to measure the distribution divergence of different modal features and integrate it into each layer for more robust representation learning. Extensive experiments on two RGBT tracking benchmark datasets demonstrate the outstanding performance of the proposed tracker against the state-of-the-art methods.
The task of RGBT tracking aims to take the complementary advantages from visible spectrum and thermal infrared data to achieve robust visual tracking, and receives more and more attention in recent years. Existing works focus on modality-specific inf
For both visible and infrared images have their own advantages and disadvantages, RGBT tracking has attracted more and more attention. The key points of RGBT tracking lie in feature extraction and feature fusion of visible and infrared images. Curren
Low-quality modalities contain not only a lot of noisy information but also some discriminative features in RGBT tracking. However, the potentials of low-quality modalities are not well explored in existing RGBT tracking algorithms. In this work, we
RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role to represent the target appearance in RGBT tracking. In this paper, we propose a novel challenge-aware neural netwo
Classifying the confusing samples in the course of RGBT tracking is a quite challenging problem, which hasnt got satisfied solution. Existing methods only focus on enlarging the boundary between positive and negative samples, however, the structured