ﻻ يوجد ملخص باللغة العربية
For both visible and infrared images have their own advantages and disadvantages, RGBT tracking has attracted more and more attention. The key points of RGBT tracking lie in feature extraction and feature fusion of visible and infrared images. Current RGBT tracking methods mostly pay attention to both individual features (features extracted from images of a single camera) and common features (features extracted and fused from an RGB camera and a thermal camera), while pay less attention to the different and dynamic contributions of individual features and common features for different sequences of registered image pairs. This paper proposes a novel RGBT tracking method, called Dynamic Fusion Network (DFNet), which adopts a two-stream structure, in which two non-shared convolution kernels are employed in each layer to extract individual features. Besides, DFNet has shared convolution kernels for each layer to extract common features. Non-shared convolution kernels and shared convolution kernels are adaptively weighted and summed according to different image pairs, so that DFNet can deal with different contributions for different sequences. DFNet has a fast speed, which is 28.658 FPS. The experimental results show that when DFNet only increases the Mult-Adds of 0.02% than the non-shared-convolution-kernel-based fusion method, Precision Rate (PR) and Success Rate (SR) reach 88.1% and 71.9% respectively.
Low-quality modalities contain not only a lot of noisy information but also some discriminative features in RGBT tracking. However, the potentials of low-quality modalities are not well explored in existing RGBT tracking algorithms. In this work, we
The task of RGBT tracking aims to take the complementary advantages from visible spectrum and thermal infrared data to achieve robust visual tracking, and receives more and more attention in recent years. Existing works focus on modality-specific inf
RGB and thermal source data suffer from both shared and specific challenges, and how to explore and exploit them plays a critical role to represent the target appearance in RGBT tracking. In this paper, we propose a novel challenge-aware neural netwo
RGBT tracking has attracted increasing attention since RGB and thermal infrared data have strong complementary advantages, which could make trackers all-day and all-weather work. However, how to effectively represent RGBT data for visual tracking rem
RGBT tracking receives a surge of interest in the computer vision community, but this research field lacks a large-scale and high-diversity benchmark dataset, which is essential for both the training of deep RGBT trackers and the comprehensive evalua