ﻻ يوجد ملخص باللغة العربية
Classifying the confusing samples in the course of RGBT tracking is a quite challenging problem, which hasnt got satisfied solution. Existing methods only focus on enlarging the boundary between positive and negative samples, however, the structured information of samples might be harmed, e.g., confusing positive samples are closer to the anchor than normal positive samples.To handle this problem, we propose a novel Multi-Modal Multi-Margin Metric Learning framework, named M$^5$L for RGBT tracking in this paper. In particular, we design a multi-margin structured loss to distinguish the confusing samples which play a most critical role in tracking performance boosting. To alleviate this problem, we additionally enlarge the boundaries between confusing positive samples and normal ones, between confusing negative samples and normal ones with predefined margins, by exploiting the structured information of all samples in each modality.Moreover, a cross-modality constraint is employed to reduce the difference between modalities and push positive samples closer to the anchor than negative ones from two modalities.In addition, to achieve quality-aware RGB and thermal feature fusion, we introduce the modality attentions and learn them using a feature fusion module in our network. Extensive experiments on large-scale datasets testify that our framework clearly improves the tracking performance and outperforms the state-of-the-art RGBT trackers.
The task of RGBT tracking aims to take the complementary advantages from visible spectrum and thermal infrared data to achieve robust visual tracking, and receives more and more attention in recent years. Existing works focus on modality-specific inf
Multi-object tracking is an important ability for an autonomous vehicle to safely navigate a traffic scene. Current state-of-the-art follows the tracking-by-detection paradigm where existing tracks are associated with detected objects through some di
Multi-target multi-camera tracking (MTMCT) systems track targets across cameras. Due to the continuity of target trajectories, tracking systems usually restrict their data association within a local neighborhood. In single camera tracking, local neig
RGBT tracking has attracted increasing attention since RGB and thermal infrared data have strong complementary advantages, which could make trackers all-day and all-weather work. However, how to effectively represent RGBT data for visual tracking rem
The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, whi