ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective response to the media coverage of COVID-19 Pandemic on Reddit and Wikipedia

75   0   0.0 ( 0 )
 نشر من قبل Nicola Perra
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The exposure and consumption of information during epidemic outbreaks may alter risk perception, trigger behavioural changes, and ultimately affect the evolution of the disease. It is thus of the uttermost importance to map information dissemination by mainstream media outlets and public response. However, our understanding of this exposure-response dynamic during COVID-19 pandemic is still limited. In this paper, we provide a characterization of media coverage and online collective attention to COVID-19 pandemic in four countries: Italy, United Kingdom, United States, and Canada. For this purpose, we collect an heterogeneous dataset including 227,768 online news articles and 13,448 Youtube videos published by mainstream media, 107,898 users posts and 3,829,309 comments on the social media platform Reddit, and 278,456,892 views to COVID-19 related Wikipedia pages. Our results show that public attention, quantified as users activity on Reddit and active searches on Wikipedia pages, is mainly driven by media coverage and declines rapidly, while news exposure and COVID-19 incidence remain high. Furthermore, by using an unsupervised, dynamical topic modeling approach, we show that while the attention dedicated to different topics by media and online users are in good accordance, interesting deviations emerge in their temporal patterns. Overall, our findings offer an additional key to interpret public perception/response to the current global health emergency and raise questions about the effects of attention saturation on collective awareness, risk perception and thus on tendencies towards behavioural changes.



قيم البحث

اقرأ أيضاً

135 - Wei Wu , Hanjia Lyu , Jiebo Luo 2021
It has been one year since the outbreak of the COVID-19 pandemic. The good news is that vaccines developed by several manufacturers are being actively distributed worldwide. However, as more and more vaccines become available to the public, various c oncerns related to vaccines become the primary barriers that may hinder the public from getting vaccinated. Considering the complexities of these concerns and their potential hazards, this study aims to offer a clear understanding about different population groups underlying concerns when they talk about COVID-19 vaccines, particular those active on Reddit. The goal is achieved by applying LDA and LIWC to characterizing the pertaining discourse with insights generated through a combination of quantitative and qualitative comparisons. Findings include: 1) during the pandemic, the proportion of Reddit comments predominated by conspiracy theories outweighed that of any other topics; 2) each subreddit has its own user bases, so information posted in one subreddit may not reach those from other subreddits; 3) since users concerns vary across time and subreddits, communication strategies must be adjusted according to specific needs. The results of this study manifest challenges as well as opportunities in the process of designing effective communication and immunization programs.
Risk and response communication of public agencies through social media played a significant role in the emergence and spread of novel Coronavirus (COVID-19) and such interactions were echoed in other information outlets. This study collected time-se nsitive online social media data and analyzed such communication patterns from public health (WHO, CDC), emergency (FEMA), and transportation (FDOT) agencies using data-driven methods. The scope of the work includes a detailed understanding of how agencies communicate risk information through social media during a pandemic and influence community response (i.e. timing of lockdown, timing of reopening) and disease outbreak indicators (i.e. number of confirmed cases, number of deaths). The data includes Twitter interactions from different agencies (2.15K tweets per agency on average) and crowdsourced data (i.e. Worldometer) on COVID-19 cases and deaths were observed between February 21, 2020 and June 06, 2020. Several machine learning techniques such as (i.e. topic mining and sentiment ratings over time) are applied here to identify the dynamics of emergent topics during this unprecedented time. Temporal infographics of the results captured the agency-levels variations over time in circulating information about the importance of face covering, home quarantine, social distancing and contact tracing. In addition, agencies showed differences in their discussions about community transmission, lack of personal protective equipment, testing and medical supplies, use of tobacco, vaccine, mental health issues, hospitalization, hurricane season, airports, construction work among others. Findings could support more efficient transfer of risk and response information as communities shift to new normal as well as in future pandemics.
The policies implemented to hinder the COVID-19 outbreak represent one of the largest critical events in history. The understanding of this process is fundamental for crafting and tailoring post-disaster relief. In this work we perform a massive data analysis, through geolocalized data from 13M Facebook users, on how such a stress affected mobility patterns in France, Italy and UK. We find that the general reduction of the overall efficiency in the network of movements is accompanied by geographical fragmentation with a massive reduction of long-range connections. The impact, however, differs among nations according to their initial mobility structure. Indeed, we find that the mobility network after the lockdown is more concentrated in the case of France and UK and more distributed in Italy. Such a process can be approximated through percolation to quantify the substantial impact of the lockdown.
356 - Cuihua Shen 2020
Can public social media data be harnessed to predict COVID-19 case counts? We analyzed approximately 15 million COVID-19 related posts on Weibo, a popular Twitter-like social media platform in China, from November 1, 2019 to March 31, 2020. We develo ped a machine learning classifier to identify sick posts, which are reports of ones own and other peoples symptoms and diagnosis related to COVID-19. We then modeled the predictive power of sick posts and other COVID-19 posts on daily case counts. We found that reports of symptoms and diagnosis of COVID-19 significantly predicted daily case counts, up to 14 days ahead of official statistics. But other COVID-19 posts did not have similar predictive power. For a subset of geotagged posts (3.10% of all retrieved posts), we found that the predictive pattern held true for both Hubei province and the rest of mainland China, regardless of unequal distribution of healthcare resources and outbreak timeline. Researchers and disease control agencies should pay close attention to the social media infosphere regarding COVID-19. On top of monitoring overall search and posting activities, it is crucial to sift through the contents and efficiently identify true signals from noise.
113 - Ziyu Xiong , Pin Li , Hanjia Lyu 2021
Since March 2020, companies nationwide have started work from home (WFH) due to the rapid increase of confirmed COVID-19 cases in an attempt to help prevent the coronavirus from spreading and rescue the economy from the pandemic. Many organizations h ave conducted surveys to understand peoples opinions towards WFH. However, the findings are limited due to small sample size and the dynamic topics over time. This study aims to understand the U.S. public opinions on working from home during the COVID-19 pandemic. We conduct a large-scale social media study using Twitter data to portrait different groups who have positive/negative opinions about WFH. We perform an ordinary least squares regression to investigate the relationship between the sentiment about WFH and user characteristics including gender, age, ethnicity, median household income, and population density. To better understand public opinion, we use latent Dirichlet allocation to extract topics and discover how tweet contents relate to peoples attitudes. These findings provide evidence that sentiment about WFH varies across user characteristics. Furthermore, the content analysis sheds light on the nuanced differences in sentiment and reveals disparities relate to WFH.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا