ﻻ يوجد ملخص باللغة العربية
Using Foster-Lyapunov techniques we establish new conditions on non-extinction, non-explosion, coming down from infinity and staying infinite, respectively, for the general continuous-state nonlinear branching processes introduced in Li et al. (2019). These results can be applied to identify boundary behaviors for the critical cases of the above nonlinear branching processes with power rate functions driven by Brownian motion and (or) stable Poisson random measure, which was left open in Li et al. (2019). In particular, we show that even in the critical cases, a phase transition happens between coming down from infinity and staying infinite.
Recently in Barczy, Li and Pap (2015), the notion of a multi-type continuous-state branching process (with immigration) having d-types was introduced as a solution to an d-dimensional vector- valued SDE. Preceding that, work on affine processes, orig
We consider a critical superprocess ${X;mathbf P_mu}$ with general spatial motion and spatially dependent stable branching mechanism with lowest stable index $gamma_0 > 1$. We first show that, under some conditions, $mathbf P_{mu}(|X_t| eq 0)$ conver
We study the branching random walk on weighted graphs; site-breeding and edge-breeding branching random walks on graphs are seen as particular cases. We describe the strong critical value in terms of a geometrical parameter of the graph. We character
We introduce and study the dynamics of an emph{immortal} critical branching process. In the classic, critical branching process, particles give birth to a single offspring or die at the same rates. Even though the average population is constant in ti
Our purpose is to study a particular class of optimal stopping problems for Markov processes. We justify the value function convexity and we deduce that there exists a boundary function such that the smallest optimal stopping time is the first time w