ﻻ يوجد ملخص باللغة العربية
Recently in Barczy, Li and Pap (2015), the notion of a multi-type continuous-state branching process (with immigration) having d-types was introduced as a solution to an d-dimensional vector- valued SDE. Preceding that, work on affine processes, originally motivated by math- ematical finance, in Duffie, Filipovic and Schachermayer (2003) also showed the existence of such processes. See also more recent contributions in this direction due to Gabrielli and Teichmann (2014) and Caballero, Perez Garmendia and Uribe Bravo (2015). Older work on multi-type continuous-state branching processes is more sparse but includes Watanabe (1969) and Ma (2013), where only two types are considered. In this paper we take a completely different approach and consider multi-type continuous-state branching process, now allowing for up to a countable infinity of types, defined instead as a super Markov chain with both local and non-local branching mechanisms. In the spirit of Englander and Kyprianou (2004) we explore their extinction properties and pose a number of open problems.
Using Foster-Lyapunov techniques we establish new conditions on non-extinction, non-explosion, coming down from infinity and staying infinite, respectively, for the general continuous-state nonlinear branching processes introduced in Li et al. (2019)
We consider Galton-Watson branching processes with countable typeset $mathcal{X}$. We study the vectors ${bf q}(A)=(q_x(A))_{xinmathcal{X}}$ recording the conditional probabilities of extinction in subsets of types $Asubseteq mathcal{X}$, given that
The stationary asymptotic properties of the diffusion limit of a multi-type branching process with neutral mutations are studied. For the critical and subcritical processes the interesting limits are those of quasi-stationary distributions conditione
In this paper we prove that, under the assumption of quasi-transitivity, if a branching random walk on ${{mathbb{Z}}^d}$ survives locally (at arbitrarily large times there are individuals alive at the origin), then so does the same process when restr
We introduce and study the dynamics of an emph{immortal} critical branching process. In the classic, critical branching process, particles give birth to a single offspring or die at the same rates. Even though the average population is constant in ti