ترغب بنشر مسار تعليمي؟ اضغط هنا

Extinction properties of multi-type continuous-state branching processes

47   0   0.0 ( 0 )
 نشر من قبل Andreas Kyprianou A.E.
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently in Barczy, Li and Pap (2015), the notion of a multi-type continuous-state branching process (with immigration) having d-types was introduced as a solution to an d-dimensional vector- valued SDE. Preceding that, work on affine processes, originally motivated by math- ematical finance, in Duffie, Filipovic and Schachermayer (2003) also showed the existence of such processes. See also more recent contributions in this direction due to Gabrielli and Teichmann (2014) and Caballero, Perez Garmendia and Uribe Bravo (2015). Older work on multi-type continuous-state branching processes is more sparse but includes Watanabe (1969) and Ma (2013), where only two types are considered. In this paper we take a completely different approach and consider multi-type continuous-state branching process, now allowing for up to a countable infinity of types, defined instead as a super Markov chain with both local and non-local branching mechanisms. In the spirit of Englander and Kyprianou (2004) we explore their extinction properties and pose a number of open problems.



قيم البحث

اقرأ أيضاً

Using Foster-Lyapunov techniques we establish new conditions on non-extinction, non-explosion, coming down from infinity and staying infinite, respectively, for the general continuous-state nonlinear branching processes introduced in Li et al. (2019) . These results can be applied to identify boundary behaviors for the critical cases of the above nonlinear branching processes with power rate functions driven by Brownian motion and (or) stable Poisson random measure, which was left open in Li et al. (2019). In particular, we show that even in the critical cases, a phase transition happens between coming down from infinity and staying infinite.
We consider Galton-Watson branching processes with countable typeset $mathcal{X}$. We study the vectors ${bf q}(A)=(q_x(A))_{xinmathcal{X}}$ recording the conditional probabilities of extinction in subsets of types $Asubseteq mathcal{X}$, given that the type of the initial individual is $x$. We first investigate the location of the vectors ${bf q}(A)$ in the set of fixed points of the progeny generating vector and prove that $q_x({x})$ is larger than or equal to the $x$th entry of any fixed point, whenever it is different from 1. Next, we present equivalent conditions for $q_x(A)< q_x (B)$ for any initial type $x$ and $A,Bsubseteq mathcal{X}$. Finally, we develop a general framework to characterise all emph{distinct} extinction probability vectors, and thereby to determine whether there are finitely many, countably many, or uncountably many distinct vectors. We illustrate our results with examples, and conclude with open questions.
The stationary asymptotic properties of the diffusion limit of a multi-type branching process with neutral mutations are studied. For the critical and subcritical processes the interesting limits are those of quasi-stationary distributions conditione d on non-extinction. Limiting distributions for supercritical and critical processes are found to collapse onto rays aligned with stationary eigenvectors of the mutation rate matrix, in agreement with known results for discrete multi-type branching processes. For the sub-critical process the quasi-stationary distribution is obtained to first order in the overall mutation rate, which is assumed to be small. The sampling distribution over allele types for a sample of given finite size is found to agree to first order in mutation rates with the analogous sampling distribution for a Wright-Fisher diffusion with constant population size.
In this paper we prove that, under the assumption of quasi-transitivity, if a branching random walk on ${{mathbb{Z}}^d}$ survives locally (at arbitrarily large times there are individuals alive at the origin), then so does the same process when restr icted to the infinite percolation cluster ${{mathcal{C}}_{infty}}$ of a supercritical Bernoulli percolation. When no more than $k$ individuals per site are allowed, we obtain the $k$-type contact process, which can be derived from the branching random walk by killing all particles that are born at a site where already $k$ individuals are present. We prove that local survival of the branching random walk on ${{mathbb{Z}}^d}$ also implies that for $k$ sufficiently large the associated $k$-type contact process survives on ${{mathcal{C}}_{infty}}$. This implies that the strong critical parameters of the branching random walk on ${{mathbb{Z}}^d}$ and on ${{mathcal{C}}_{infty}}$ coincide and that their common value is the limit of the sequence of strong critical parameters of the associated $k$-type contact processes. These results are extended to a family of restrained branching random walks, that is, branching random walks where the success of the reproduction trials decreases with the size of the population in the target site.
We introduce and study the dynamics of an emph{immortal} critical branching process. In the classic, critical branching process, particles give birth to a single offspring or die at the same rates. Even though the average population is constant in ti me, the ultimate fate of the population is extinction. We augment this branching process with immortality by positing that either: (a) a single particle cannot die, or (b) there exists an immortal stem cell that gives birth to ordinary cells that can subsequently undergo critical branching. We discuss the new dynamical aspects of this immortal branching process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا