ﻻ يوجد ملخص باللغة العربية
We consider a critical superprocess ${X;mathbf P_mu}$ with general spatial motion and spatially dependent stable branching mechanism with lowest stable index $gamma_0 > 1$. We first show that, under some conditions, $mathbf P_{mu}(|X_t| eq 0)$ converges to $0$ as $tto infty$ and is regularly varying with index $(gamma_0-1)^{-1}$. Then we show that, for a large class of non-negative testing functions $f$, the distribution of ${X_t(f);mathbf P_mu(cdot||X_t| eq 0)}$, after appropriate rescaling, converges weakly to a positive random variable $mathbf z^{(gamma_0-1)}$ with Laplace transform $E[e^{-umathbf z^{(gamma_0-1)}}]=1-(1+u^{-(gamma_0-1)})^{-1/(gamma_0-1)}.$
In this paper, we first establish a decomposition theorem for size-biased Poisson random measures. As consequences of this decomposition theorem, we get a spine decomposition theorem and a 2-spine decomposition theorem for some critical superprocesse
We consider one-dimensional branching Brownian motion in which particles are absorbed at the origin. We assume that when a particle branches, the offspring distribution is supercritical, but the particles are given a critical drift towards the origin
We consider the branching process in random environment ${Z_n}_{ngeq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We focus on the super
In this paper, we study the asymptotic behavior of a supercritical $(xi,psi)$-superprocess $(X_t)_{tgeq 0}$ whose underlying spatial motion $xi$ is an Ornstein-Uhlenbeck process on $mathbb R^d$ with generator $L = frac{1}{2}sigma^2Delta - b x cdot a
This paper is a continuation of our recent paper (Elect. J. Probab. 24 (2019), no. 141) and is devoted to the asymptotic behavior of a class of supercritical super Ornstein-Uhlenbeck processes $(X_t)_{tgeq 0}$ with branching mechanisms of infinite se