ﻻ يوجد ملخص باللغة العربية
Nanoscale electromechanical coupling provides a unique route towards control of mechanical motions and microwave fields in superconducting cavity electromechanical devices. Though their successes in utilizing the optomechanical or electromechanical back-action effects for various purposes, aluminum imposes severe constraints on their operating conditions with its low superconducting critical temperature (1.2 K) and magnetic field (0.01 T). To extend the potential of the devices, here we fabricate a superconducting electromechanical device employing niobium and demonstrate a set of cavity electromechanical dynamics including back-action cooling and amplification, and electromechanically induced reflection at 4.2 K and in strong magnetic fields up to 0.8 T. This device could be used to realize electromechanical microwave components for quantum technologies by integrating amplifiers, converters, and circulators on a single chip that can be installed at the 4K stage of dilution refrigerators. Moreover, with its ability to control and readout nanomechanical motions simultaneously, this niobium electromechanical transducer could provide powerful nanomechanical sensing platforms.
High kinetic inductance materials constitute a valuable resource for superconducting quantum circuits and hybrid architectures. Superconducting granular aluminum (grAl) reaches kinetic sheet inductances in the nH/$square$ range, with proven applicabi
The unique properties and atomic thickness of two-dimensional (2D) materials enable smaller and better nanoelectromechanical sensors with novel functionalities. During the last decade, many studies have successfully shown the feasibility of using sus
A high Q-factor microwave resonator in a high magnetic field could be used in a wide range of applications, especially for enhancing the scanning speed in axion dark matter research. In this letter, we introduce a polygon-shaped resonant cavity with
Superconducting coplanar waveguide resonators that can operate in strong magnetic fields are important tools for a variety of high frequency superconducting devices. Magnetic fields degrade resonator performance by creating Abrikosov vortices that ca
Nanoelectromechanical system (NEMS) sensors and actuators could be of use in the development of next generation mobile, wearable, and implantable devices. However, these NEMS devices require transducers that are ultra-small, sensitive and can be fabr