ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene ribbons with suspended masses as transducers in ultra-small nanoelectromechanical accelerometers

212   0   0.0 ( 0 )
 نشر من قبل Xuge Fan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Xuge Fan




اسأل ChatGPT حول البحث

Nanoelectromechanical system (NEMS) sensors and actuators could be of use in the development of next generation mobile, wearable, and implantable devices. However, these NEMS devices require transducers that are ultra-small, sensitive and can be fabricated at low cost. Here, we show that suspended double-layer graphene ribbons with attached silicon proof masses can be used as combined spring-mass and piezoresistive transducers. The transducers, which are realized using processes that are compatible with large-scale semiconductor manufacturing technologies, can yield NEMS accelerometers that occupy at least two orders of magnitude smaller die area than conventional state-of-the-art silicon accelerometers.

قيم البحث

اقرأ أيضاً

The unique properties and atomic thickness of two-dimensional (2D) materials enable smaller and better nanoelectromechanical sensors with novel functionalities. During the last decade, many studies have successfully shown the feasibility of using sus pended membranes of 2D materials in pressure sensors, microphones, accelerometers, and mass and gas sensors. In this review, we explain the different sensing concepts and give an overview of the relevant material properties, fabrication routes, and device operation principles. Finally, we discuss sensor readout and integration methods and provide comparisons against the state of the art to show both the challenges and promises of 2D material-based nanoelectromechanical sensing.
73 - Xuge Fan 2020
Unparalleled strength, chemical stability, ultimate surface-to-volume ratio and excellent electronic properties of graphene make it an ideal candidate as a material for membranes in micro- and nanoelectromechanical systems (MEMS and NEMS). However, t he integration of graphene into MEMS or NEMS devices and suspended structures such as proof masses on graphene membranes raises several technological challenges, including collapse and rupture of the graphene. We have developed a robust route for realizing membranes made of double-layer CVD graphene and suspending large silicon proof masses on membranes with high yields. We have demonstrated the manufacture of square graphene membranes with side lengths from 7 micro meter to 110 micro meter and suspended proof masses consisting of solid silicon cubes that are from 5 micro meter multiply 5 micro meter multiply 16.4 micro meter to 100 micro meter multiply 100 micro meter multiply 16.4 micro meter in size. Our approach is compatible with wafer-scale MEMS and semiconductor manufacturing technologies, and the manufacturing yields of the graphene membranes with suspended proof masses were greater than 90%, with more than 70% of the graphene membranes having more than 90% graphene area without visible defects. The graphene membranes with suspended proof masses were extremely robust and were able to withstand indentation forces from an atomic force microscope (AFM) tip of up to ~7000 nN. The measured resonance frequencies of the realized structures ranged from tens to hundreds of kHz, with quality factors ranging from 63 to 148. The proposed approach for the reliable and large-scale manufacture of graphene membranes with suspended proof masses will enable the development and study of innovative NEMS devices with new functionalities and improved performances.
Transition metal dichalcogenides have emerged as promising materials for nano-photonic resonators due to their large refractive index, low absorption within the visible spectrum and compatibility with a wide variety of substrates. Here we use these p roperties to fabricate WS$_2$ monomer and dimer nano-antennas in a variety of geometries enabled by the anisotropy in the crystal structure. Using dark field spectroscopy, we reveal multiple Mie resonances, including anapole modes, for which we show polarization-sensitive second harmonic generation in the dimer nano-antennas. We introduce post-fabrication atomic force microscopy repositioning and rotation of dimer nano-antennas, achieving gaps as small as 10$pm$5 nm and opening a host of potential applications. We further studied these structures with numerical simulations yielding electric field intensity enhancements of >10$^3$ corresponding to Purcell factors as high as 157 for emitters positioned within the nano-antenna hotspots. Optical trapping simulations of small dimer gaps yield attractive forces of >350 fN for colloidal quantum dots and > 70 fN for protein-like, polystyrene beads. Our findings highlight the advantages of using transition metal dichalcogenides for nano-photonics by exploring new applications enabled by their unique properties.
We report on the fabrication and characterization of an optimized comb-drive actuator design for strain-dependent transport measurements on suspended graphene. We fabricate devices from highly p-doped silicon using deep reactive ion etching with a ch romium mask. Crucially, we implement a gold layer to reduce the device resistance from $approx51.6$ k$mathrm{Omega}$ to $approx236$ $mathrm{Omega}$ at room temperature in order to allow for strain-dependent transport measurements. The graphene is integrated by mechanically transferring it directly onto the actuator using a polymethylmethacrylate membrane. Importantly, the integrated graphene can be nanostructured afterwards to optimize device functionality. The minimum feature size of the structured suspended graphene is 30 nm, which allows for interesting device concepts such as mechanically-tunable nanoconstrictions. Finally, we characterize the fabricated devices by measuring the Raman spectrum as well as the a mechanical resonance frequency of an integrated graphene sheet for different strain values.
Graphene-based photodetectors, taking advantage of high carrier mobility and broadband absorption in graphene, have recently experienced rapid development. However, their performances with respect to the responsivity and bandwidth are still limited b y either weak light-graphene interaction or large resistance-capacitance product. Here, we demonstrate a waveguide coupled integrated graphene plasmonic photodetector on the silicon-on-insulator platform. Benefiting from plasmonic enhanced graphene-light interactions and subwavelength confinement of the optical energy, we present a small-footprint graphene-plasmonic photodetector with bandwidth beyond 110GHz and intrinsic responsivity of 360mA/W. Attributed to the unique electronic bandstructure of graphene and its ultra-broadband absorption, the operational wavelength range extending beyond mid-infrared, and possibly further, can be anticipated. Our results show that the combination of graphene with plasmonic devices has great potential to realize ultra-compact and high-speed optoelectronic devices for graphene-based optical interconnects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا