ﻻ يوجد ملخص باللغة العربية
A high Q-factor microwave resonator in a high magnetic field could be used in a wide range of applications, especially for enhancing the scanning speed in axion dark matter research. In this letter, we introduce a polygon-shaped resonant cavity with commercial YBCO tapes covering the entire inner wall. We demonstrated that the maximum Q-factor (TM$_{010}$, 6.93 GHz) of the superconducting YBCO cavity was about 6 times higher than that of a copper cavity and showed no significant degradation up to 8 T at 4 K. This is the first indication of the possible applications of HTS technology to the research areas requiring low loss in a strong magnetic field at high radio frequencies.
A high Q-factor microwave resonator in a high magnetic field could be of great use in a wide range of fields, from accelerator design to axion dark matter search. The natural choice of material for the superconducting cavity to be placed in a high fi
Scaling up trapped-ion quantum computers requires new trap materials to be explored. Here, we present experiments with a surface ion trap made from the high-temperature superconductor YBCO, a promising material for future trap designs. We show that v
Superconducting Quantum Interference Filters (SQIF) are promising devices for Radio- Frequency (RF) detection combining low noise, high sensitivity, large dynamic range and wide-band capabilities. Impressive progress have been made recently in the fi
Developing compact, low-dissipation, cryogenic-compatible microwave electronics is essential for scaling up low-temperature quantum computing systems. In this paper, we demonstrate an ultra-compact microwave directional forward coupler based on high-
Photodetectors based on nano-structured superconducting thin films are currently some of the most sensitive quantum sensors and are key enabling technologies in such broad areas as quantum information, quantum computation and radio-astronomy. However