ﻻ يوجد ملخص باللغة العربية
All estimators of the two-point correlation function are based on a random catalogue, a set of points with no intrinsic clustering following the selection function of a survey. High-accuracy estimates require the use of large random catalogues, which imply a high computational cost. We propose to replace the standard random catalogues by glass-like point distributions or glass catalogues, which are characterized by a power spectrum $P(k)propto k^4$ and exhibit significantly less power than a Poisson distribution with the same number of points on scales larger than the mean inter-particle separation. We show that these distributions can be obtained by iteratively applying the technique of Zeldovich reconstruction commonly used in studies of baryon acoustic oscillations (BAO). We provide a modified version of the widely used Landy-Szalay estimator of the correlation function adapted to the use of glass catalogues and compare its performance with the results obtained using random samples. Our results show that glass-like samples do not add any bias with respect to the results obtained using Poisson distributions. On scales larger than the mean inter-particle separation of the glass catalogues, the modified estimator leads to a significant reduction of the variance of the Legendre multipoles $xi_ell(s)$ with respect to the standard Landy-Szalay results with the same number of points. The size of the glass catalogue required to achieve a given accuracy in the correlation function is significantly smaller than when using random samples. Even considering the small additional cost of constructing the glass catalogues, their use could help to drastically reduce the computational cost of configuration-space clustering analysis of future surveys while maintaining high-accuracy requirements.
The two-point correlation function of the galaxy distribution is a key cosmological observable that allows us to constrain the dynamical and geometrical state of our Universe. To measure the correlation function we need to know both the galaxy positi
We present a new method to estimate redshift distributions and galaxy-dark matter bias parameters using correlation functions in a fully data driven and self-consistent manner. Unlike other machine learning, template, or correlation redshift methods,
We present correction terms that allow delete-one Jackknife and Bootstrap methods to be used to recover unbiased estimates of the data covariance matrix of the two-point correlation function $xileft(mathbf{r}right)$. We demonstrate the accuracy and p
We perform theoretical and numerical studies of the full relativistic two-point galaxy correlation function, considering the linear-order scalar and tensor perturbation contributions and the wide-angle effects. Using the gauge-invariant relativistic
We present an $8.1sigma$ detection of the non-Gaussian 4-Point Correlation Function (4PCF) using a sample of $N_{rm g} approx 8times 10^5$ galaxies from the BOSS CMASS dataset. Our measurement uses the $mathcal{O}(N_{rm g}^2)$ NPCF estimator of Philc