ﻻ يوجد ملخص باللغة العربية
We present an $8.1sigma$ detection of the non-Gaussian 4-Point Correlation Function (4PCF) using a sample of $N_{rm g} approx 8times 10^5$ galaxies from the BOSS CMASS dataset. Our measurement uses the $mathcal{O}(N_{rm g}^2)$ NPCF estimator of Philcox et al. (2021), including a new modification to subtract the disconnected 4PCF contribution (arising from the product of two 2PCFs) at the estimator level. This approach is unlike previous work and ensures that our signal is a robust detection of gravitationally-induced non-Gaussianity. The estimator is validated with a suite of lognormal simulations, and the analytic form of the disconnected contribution is discussed. Due to the high dimensionality of the 4PCF, data compression is required; we use a signal-to-noise-based scheme calibrated from theoretical covariance matrices to restrict to $sim$ $100$ basis vectors. The compression has minimal impact on the detection significance and facilitates traditional $chi^2$-like analyses using a suite of mock catalogs. The significance is stable with respect to different treatments of noise in the sample covariance (arising from the limited number of mocks), but decreases to $4.7sigma$ when a minimum galaxy separation of $14 h^{-1}mathrm{Mpc}$ is enforced on the 4PCF tetrahedra (such that the statistic can be modelled more easily). The detectability of the 4PCF in the quasi-linear regime implies that it will become a useful tool in constraining cosmological and galaxy formation parameters from upcoming spectroscopic surveys.
General relativistic effects have long been predicted to subtly influence the observed large-scale structure of the universe. The current generation of galaxy redshift surveys have reached a size where detection of such effects is becoming feasible.
We construct cosmic microwave background lensing mass maps using data from the 2014 and 2015 seasons of observations with the Atacama Cosmology Telescope (ACT). These maps cover 2100 square degrees of sky and overlap with a wide variety of optical su
The DES-CMASS sample (DMASS) is designed to optimally combine the weak lensing measurements from the Dark Energy Survey (DES) and redshift-space distortions (RSD) probed by the CMASS galaxy sample from the Baryonic Oscillation Spectroscopic Survey (B
The increasingly large amount of cosmological data coming from ground-based and space-borne telescopes requires highly efficient and fast enough data analysis techniques to maximise the scientific exploitation. In this work, we explore the capabiliti
The thermal and kinematic Sunyaev-Zeldovich effects (tSZ, kSZ) probe the thermodynamic properties of the circumgalactic and intracluster medium (CGM and ICM) of galaxies, groups, and clusters, since they are proportional, respectively, to the integra