ﻻ يوجد ملخص باللغة العربية
We present correction terms that allow delete-one Jackknife and Bootstrap methods to be used to recover unbiased estimates of the data covariance matrix of the two-point correlation function $xileft(mathbf{r}right)$. We demonstrate the accuracy and precision of this new method using a large set of 1000 QUIJOTE simulations that each cover a comoving volume of $1rm{left[h^{-1}Gpcright]^3}$. The corrected resampling techniques accurately recover the correct amplitude and structure of the data covariance matrix as represented by its principal components. Our corrections for the internal resampling methods are shown to be robust against the intrinsic clustering of the cosmological tracers both in real- and redshift space using two snapshots at $z=0$ and $z=1$ that mimic two samples with significantly different clustering. We also analyse two different slicing of the simulation volume into $n_{rm sv}=64$ or $125$ sub-samples and show that the main impact of different $n_{rm sv}$ is on the structure of the covariance matrix due to the limited number of independent internal realisations that can be made given a fixed $n_{rm sv}$.
We present a fast and robust alternative method to compute covariance matrix in case of cosmology studies. Our method is based on the jackknife resampling applied on simulation mock catalogues. Using a set of 600 BOSS DR11 mock catalogues as a refere
All estimators of the two-point correlation function are based on a random catalogue, a set of points with no intrinsic clustering following the selection function of a survey. High-accuracy estimates require the use of large random catalogues, which
We perform theoretical and numerical studies of the full relativistic two-point galaxy correlation function, considering the linear-order scalar and tensor perturbation contributions and the wide-angle effects. Using the gauge-invariant relativistic
Context: The cross-covariance of solar oscillations observed at pairs of points on the solar surface is a fundamental ingredient in time-distance helioseismology. Wave travel times are extracted from the cross-covariance function and are used to infe
The two-point correlation function of the galaxy distribution is a key cosmological observable that allows us to constrain the dynamical and geometrical state of our Universe. To measure the correlation function we need to know both the galaxy positi