ﻻ يوجد ملخص باللغة العربية
Antiferromagnetism (AF) such as Neel ordering is often closely related to Coulomb interactions such as Hubbard repulsion in two-dimensional (2D) systems. Whether Neel AF ordering in 2D can be dominantly induced by electron-phonon couplings (EPC) has not been completely understood. Here, by employing numerically-exact sign-problem-free quantum Monte Carlo (QMC) simulations, we show that optical Su-Schrieffer-Heeger (SSH) phonons with frequency $omega$ and EPC constant $lambda$ can induce AF ordering for a wide range of phonon frequency $omega>omega_c$. For $omega<omega_c$, a valence-bond-solid (VBS) order appears and there is a direct quantum phase transition between VBS and AF phases at $omega_c$. The phonon mechanism of the AF ordering is related to the fact that SSH phonons directly couple to electron hopping whose second-order process can induce an effective AF spin exchange. Our results shall shed new lights to understanding AF ordering in correlated quantum materials.
The lattice dynamics in Sr$_2$RuO$_4$ has been studied by inelastic neutron scattering combined with shell-model calculations. The in-plane bond-stretching modes in Sr$_2$RuO$_4$ exhibit a normal dispersion in contrast to all electronically doped per
We examine multiple techniques for extracting information from angle-resolved photoemission spectroscopy (ARPES) data, and test them against simulated spectral functions for electron-phonon coupling. We find that, in the low-coupling regime, it is po
The temperature dependence of peak widths in high resolution angle-resolved photoelectron spectroscopy from quantum well states in ultra thin Ag films on V(100) has been used to determine the electron-phonon coupling constant, lambda, for films of th
We report an experimental determination of the dispersion of the soft phonon mode along [1,0,0] in uranium as a function of pressure. The energies of these phonons increase rapidly, with conventional behavior found by 20 GPa, as predicted by recent t
Electron-boson coupling plays a key role in superconductivity for many systems. However, in copper-based high-temperature ($T_c$) superconductors, its relation to superconductivity remains controversial despite strong spectroscopic fingerprints. Here