ﻻ يوجد ملخص باللغة العربية
We investigate the optical properties of polycrystalline diamond membranes containing silicon-vacancy (SiV) color centers in combination with other nano-analytical techniques. We analyze the correlation between the Raman signal, the SiV emission, and the background luminescence in the crystalline grains and in the grain boundaries, identifying conditions for the addressability of single SiV centers. Moreover, we perform a scanning transmission electron microscopy (STEM) analysis, which associates the microscopic structure of the membranes and the evolution of the diamond crystal along the growth direction with the photoluminescence properties, as well as a time-of-flight secondary ion mass spectrometry (ToF-SIMS) to address the distribution of silicon in implanted and un-implanted membranes. The results of the STEM and ToF-SIMS studies are consistent with the outcome of the optical measurements and provide useful insight into the preparation of polycrystalline samples for quantum nano-optics.
We have measured the optical and mechanical loss of commercial silicon nitride membranes. We find that 50 nm-thick, 1 mm^2 membranes have mechanical Q > 10^6 at 293 K, and Q > 10^7 at 300 mK, well above what has been observed in devices with comparab
Single crystal, nanoscale diamond membranes are highly sought after for a variety of applications including nanophotonics, nanoelectronics and quantum information science. However, so far, the availability of conductive diamond membranes remained an
We addressed the carrier dynamics in so-called G-centers in silicon (consisting of substitutional-interstitial carbon pairs interacting with interstitial silicons) obtained via ion implantation into a silicon-on-insulator wafer. For this point defect
Many promising applications of single crystal diamond and its color centers as sensor platform and in photonics require free-standing membranes with a thickness ranging from several micrometers to the few 100 nm range. In this work, we present an app
Recently, vacancy-related spin defects in silicon carbide (SiC) have been demonstrated to be potentially suitable for versatile quantum interface building and scalable quantum network construction. Significant efforts have been undertaken to identify