ﻻ يوجد ملخص باللغة العربية
We have measured the optical and mechanical loss of commercial silicon nitride membranes. We find that 50 nm-thick, 1 mm^2 membranes have mechanical Q > 10^6 at 293 K, and Q > 10^7 at 300 mK, well above what has been observed in devices with comparable dimensions. The near-IR optical loss at 293 K is less than 2E-4. This combination of properties make these membranes attractive candidates for studying quantum effects in optomechanical systems.
Si3N4 is an excellent material for applications of nanophotonics at visible wavelengths due to its wide bandgap and moderately large refractive index (n $approx$ 2.0). We present the fabrication and characterization of Si3N4 photonic crystal nanobeam
In view of the integration of membrane resonators with more complex MEMS structures, we developed a general fabrication procedure for circular shape SiN$_x$ membranes using Deep Reactive Ion Etching (DRIE). Large area and high-stress SiN$_x$ membrane
We investigate the optical properties of polycrystalline diamond membranes containing silicon-vacancy (SiV) color centers in combination with other nano-analytical techniques. We analyze the correlation between the Raman signal, the SiV emission, and
The recent discovery that silicon nitride membranes can be used as extremely high Q mechanical resonators makes possible a number of novel experiments, which include improved long range vacuum Casimir force measurements, and measurments of the proper
Resonance properties of nanomechanical resonators based on doubly clamped silicon nanowires, fabricated from silicon-on-insulator and coated with a thin layer of aluminum, were experimentally investigated. Resonance frequencies of the fundamental mod