ﻻ يوجد ملخص باللغة العربية
The paper has two parts, in the first part, we apply the localisation technique to the Rozansky-Witten theory on compact HyperKahler targets. We do so via first reformulating the theory as some supersymmetric sigma-model. We obtain the exact formula for the partition function with Wilson loops on $S^1timesSigma_g$ and the lens spaces, the results match with earlier computations using Feynman diagrams on K3. The second part is motivated by a very curious preprint cite{Gukov:2020lqm}, where the equivariant index formula for the dimension of the Hilbert space the theory is interpreted as a kind of Verlinde formula. In this interpretation, the fixed points of the target HyperKahler geometry correspond to certain states. In the second half of the paper we extend the formalism of part one to incorporate equivariance on the target geometry. For certain non-compact hyperKahler geometry, we can apply the tilting theory to the derived category of coherent sheaves, whose objects label the Wilson loops, allowing us to pick a basis for the latter. We can then compute the fusion products in this basis and we show that the objects that have diagonal fusion rules are intimately related to the fixed points of the geometry. Using these objects as basis to compute the dimension of the Hilbert space leads back to the Verlinde formula, thus answering the question that motivated the paper.
By studying Rozansky-Witten theory with non-compact target spaces we find new connections with knot invariants whose physical interpretation was not known. This opens up several new avenues, which include a new formulation of $q$-series invariants of
Supersymmetric D-branes supported on the complex two-dimensional base $S$ of the local Calabi-Yau threefold $K_S$ are described by semi-stable coherent sheaves on $S$. Under suitable conditions, the BPS indices counting these objects (known as genera
We propose Picard-Fuchs equations for periods of nonabelian mirrors in this paper. The number of parameters in our Picard-Fuchs equations is the rank of the gauge group of the nonabelian GLSM, which is eventually reduced to the actual number of K{a}h
We derive a family of matrix models which encode solutions to the Seiberg-Witten theory in 4 and 5 dimensions. Partition functions of these matrix models are equal to the corresponding Nekrasov partition functions, and their spectral curves are the S
We describe supersymmetric A-branes and B-branes in open N=(2,2) dynamically gauged nonlinear sigma models (GNLSM), placing emphasis on toric manifold target spaces. For a subset of toric manifolds, these equivariant branes have a mirror description