ترغب بنشر مسار تعليمي؟ اضغط هنا

Rozansky-Witten theory, Localised then Tilted

251   0   0.0 ( 0 )
 نشر من قبل Jian Qiu
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Jian Qiu




اسأل ChatGPT حول البحث

The paper has two parts, in the first part, we apply the localisation technique to the Rozansky-Witten theory on compact HyperKahler targets. We do so via first reformulating the theory as some supersymmetric sigma-model. We obtain the exact formula for the partition function with Wilson loops on $S^1timesSigma_g$ and the lens spaces, the results match with earlier computations using Feynman diagrams on K3. The second part is motivated by a very curious preprint cite{Gukov:2020lqm}, where the equivariant index formula for the dimension of the Hilbert space the theory is interpreted as a kind of Verlinde formula. In this interpretation, the fixed points of the target HyperKahler geometry correspond to certain states. In the second half of the paper we extend the formalism of part one to incorporate equivariance on the target geometry. For certain non-compact hyperKahler geometry, we can apply the tilting theory to the derived category of coherent sheaves, whose objects label the Wilson loops, allowing us to pick a basis for the latter. We can then compute the fusion products in this basis and we show that the objects that have diagonal fusion rules are intimately related to the fixed points of the geometry. Using these objects as basis to compute the dimension of the Hilbert space leads back to the Verlinde formula, thus answering the question that motivated the paper.



قيم البحث

اقرأ أيضاً

By studying Rozansky-Witten theory with non-compact target spaces we find new connections with knot invariants whose physical interpretation was not known. This opens up several new avenues, which include a new formulation of $q$-series invariants of 3-manifolds in terms of affine Grassmannians and a generalization of Akutsu-Deguchi-Ohtsuki knot invariants.
Supersymmetric D-branes supported on the complex two-dimensional base $S$ of the local Calabi-Yau threefold $K_S$ are described by semi-stable coherent sheaves on $S$. Under suitable conditions, the BPS indices counting these objects (known as genera lized Donaldson-Thomas invariants) coincide with the Vafa-Witten invariants of $S$ (which encode the Betti numbers of the moduli space of semi-stable sheaves). For surfaces which admit a strong collection of exceptional sheaves, we develop a general method for computing these invariants by exploiting the isomorphism between the derived category of coherent sheaves and the derived category of representations of a suitable quiver with potential $(Q,W)$ constructed from the exceptional collection. We spell out the dictionary between the Chern class $gamma$ and polarization $J$ on $S$ vs. the dimension vector $vec N$ and stability parameters $veczeta$ on the quiver side. For all examples that we consider, which include all del Pezzo and Hirzebruch surfaces, we find that the BPS indices $Omega_star(gamma)$ at the attractor point (or self-stability condition) vanish, except for dimension vectors corresponding to simple representations and pure D0-branes. This opens up the possibility to compute the BPS indices in any chamber using either the flow tree or the Coulomb branch formula. In all cases we find precise agreement with independent computations of Vafa-Witten invariants based on wall-crossing and blow-up formulae. This agreement suggests that i) generating functions of DT invariants for a large class of quivers coming from strong exceptional collections are mock modular functions of higher depth and ii) non-trivial single-centered black holes and scaling solutions do not exist quantum mechanically in such local Calabi-Yau geometries.
92 - Wei Gu , Jirui Guo , Yaoxiong Wen 2020
We propose Picard-Fuchs equations for periods of nonabelian mirrors in this paper. The number of parameters in our Picard-Fuchs equations is the rank of the gauge group of the nonabelian GLSM, which is eventually reduced to the actual number of K{a}h ler parameters. These Picard-Fuchs equations are concise and novel. We justify our proposal by reproducing existing mathematical results, namely Picard-Fuchs equations of Grassmannians and Calabi-Yau manifolds as complete intersections in Grassmannians. Furthermore, our approach can be applied to other nonabelian GLSMs, so we compute Picard-Fuchs equations of some other Fano-spaces, which were not calculated in the literature before. Finally, the cohomology-valued generating functions of mirrors can be read off from our Picard-Fuchs equations. Using these generating functions, we compute Gromov-Witten invariants of various Calabi-Yau manifolds, including complete intersection Calabi-Yau manifolds in Grassmannians and non-complete intersection Calabi-Yau examples such as Pfaffian Calabi-Yau threefold and Gulliksen-Neg{aa}rd Calabi-Yau threefold, and find agreement with existing results in the literature. The generating functions we propose for non-complete intersection Calabi-Yau manifolds are genuinely new.
We derive a family of matrix models which encode solutions to the Seiberg-Witten theory in 4 and 5 dimensions. Partition functions of these matrix models are equal to the corresponding Nekrasov partition functions, and their spectral curves are the S eiberg-Witten curves of the corresponding theories. In consequence of the geometric engineering, the 5-dimensional case provides a novel matrix model formulation of the topological string theory on a wide class of non-compact toric Calabi-Yau manifolds. This approach also unifies and generalizes other matrix models, such as the Eguchi-Yang matrix model, matrix models for bundles over $P^1$, and Chern-Simons matrix models for lens spaces, which arise as various limits of our general result.
We describe supersymmetric A-branes and B-branes in open N=(2,2) dynamically gauged nonlinear sigma models (GNLSM), placing emphasis on toric manifold target spaces. For a subset of toric manifolds, these equivariant branes have a mirror description as branes in gauged Landau-Ginzburg models with neutral matter. We then study correlation functions in the topological A-twisted version of the GNLSM, and identify their values with open Hamiltonian Gromov-Witten invariants. Supersymmetry breaking can occur in the A-twisted GNLSM due to nonperturbative open symplectic vortices, and we canonically BRST quantize the mirror theory to analyze this phenomenon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا