ﻻ يوجد ملخص باللغة العربية
Supersymmetric D-branes supported on the complex two-dimensional base $S$ of the local Calabi-Yau threefold $K_S$ are described by semi-stable coherent sheaves on $S$. Under suitable conditions, the BPS indices counting these objects (known as generalized Donaldson-Thomas invariants) coincide with the Vafa-Witten invariants of $S$ (which encode the Betti numbers of the moduli space of semi-stable sheaves). For surfaces which admit a strong collection of exceptional sheaves, we develop a general method for computing these invariants by exploiting the isomorphism between the derived category of coherent sheaves and the derived category of representations of a suitable quiver with potential $(Q,W)$ constructed from the exceptional collection. We spell out the dictionary between the Chern class $gamma$ and polarization $J$ on $S$ vs. the dimension vector $vec N$ and stability parameters $veczeta$ on the quiver side. For all examples that we consider, which include all del Pezzo and Hirzebruch surfaces, we find that the BPS indices $Omega_star(gamma)$ at the attractor point (or self-stability condition) vanish, except for dimension vectors corresponding to simple representations and pure D0-branes. This opens up the possibility to compute the BPS indices in any chamber using either the flow tree or the Coulomb branch formula. In all cases we find precise agreement with independent computations of Vafa-Witten invariants based on wall-crossing and blow-up formulae. This agreement suggests that i) generating functions of DT invariants for a large class of quivers coming from strong exceptional collections are mock modular functions of higher depth and ii) non-trivial single-centered black holes and scaling solutions do not exist quantum mechanically in such local Calabi-Yau geometries.
We propose Picard-Fuchs equations for periods of nonabelian mirrors in this paper. The number of parameters in our Picard-Fuchs equations is the rank of the gauge group of the nonabelian GLSM, which is eventually reduced to the actual number of K{a}h
In [MT2] the Vafa-Witten theory of complex projective surfaces is lifted to oriented $mathbb C^*$-equivariant cohomology theories. Here we study the K-theoretic refinement. It gives rational functions in $t^{1/2}$ invariant under $t^{1/2}leftrightarr
By studying Rozansky-Witten theory with non-compact target spaces we find new connections with knot invariants whose physical interpretation was not known. This opens up several new avenues, which include a new formulation of $q$-series invariants of
We conjecture a formula for the refined $mathrm{SU}(3)$ Vafa-Witten invariants of any smooth surface $S$ satisfying $H_1(S,mathbb{Z}) = 0$ and $p_g(S)>0$. The unrefined formula corrects a proposal by Labastida-Lozano and involves unexpected algebraic
We propose a definition of Vafa-Witten invariants counting semistable Higgs pairs on a polarised surface. We use virtual localisation applied to Mochizuki/Joyce-Song pairs. For $K_Sle0$ we expect our definition coincides with an alternative definit