ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting Human-Object Interaction with Mixed Supervision

114   0   0.0 ( 0 )
 نشر من قبل Suresh Kirthi Kumaraswamy
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Human object interaction (HOI) detection is an important task in image understanding and reasoning. It is in a form of HOI triplet <human; verb; object>, requiring bounding boxes for human and object, and action between them for the task completion. In other words, this task requires strong supervision for training that is however hard to procure. A natural solution to overcome this is to pursue weakly-supervised learning, where we only know the presence of certain HOI triplets in images but their exact location is unknown. Most weakly-supervised learning methods do not make provision for leveraging data with strong supervision, when they are available; and indeed a naive combination of this two paradigms in HOI detection fails to make contributions to each other. In this regard we propose a mixed-supervised HOI detection pipeline: thanks to a specific design of momentum-independent learning that learns seamlessly across these two types of supervision. Moreover, in light of the annotation insufficiency in mixed supervision, we introduce an HOI element swapping technique to synthesize diverse and hard negatives across images and improve the robustness of the model. Our method is evaluated on the challenging HICO-DET dataset. It performs close to or even better than many fully-supervised methods by using a mixed amount of strong and weak annotations; furthermore, it outperforms representative state of the art weakly and fully-supervised methods under the same supervision.



قيم البحث

اقرأ أيضاً

Since detecting and recognizing individual human or object are not adequate to understand the visual world, learning how humans interact with surrounding objects becomes a core technology. However, convolution operations are weak in depicting visual interactions between the instances since they only build blocks that process one local neighborhood at a time. To address this problem, we learn from human perception in observing HOIs to introduce a two-stage trainable reasoning mechanism, referred to as GID block. GID block breaks through the local neighborhoods and captures long-range dependency of pixels both in global-level and instance-level from the scene to help detecting interactions between instances. Furthermore, we conduct a multi-stream network called GID-Net, which is a human-object interaction detection framework consisting of a human branch, an object branch and an interaction branch. Semantic information in global-level and local-level are efficiently reasoned and aggregated in each of the branches. We have compared our proposed GID-Net with existing state-of-the-art methods on two public benchmarks, including V-COCO and HICO-DET. The results have showed that GID-Net outperforms the existing best-performing methods on both the above two benchmarks, validating its efficacy in detecting human-object interactions.
Rapid progress has been witnessed for human-object interaction (HOI) recognition, but most existing models are confined to single-stage reasoning pipelines. Considering the intrinsic complexity of the task, we introduce a cascade architecture for a m ulti-stage, coarse-to-fine HOI understanding. At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network. Each of the two networks is also connected to its predecessor at the previous stage, enabling cross-stage information propagation. The interaction recognition network has two crucial parts: a relation ranking module for high-quality HOI proposal selection and a triple-stream classifier for relation prediction. With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding. Further beyond relation detection on a bounding-box level, we make our framework flexible to perform fine-grained pixel-wise relation segmentation; this provides a new glimpse into better relation modeling. Our approach reached the $1^{st}$ place in the ICCV2019 Person in Context Challenge, on both relation detection and segmentation tasks. It also shows promising results on V-COCO.
This paper revisits human-object interaction (HOI) recognition at image level without using supervisions of object location and human pose. We name it detection-free HOI recognition, in contrast to the existing detection-supervised approaches which r ely on object and keypoint detections to achieve state of the art. With our method, not only the detection supervision is evitable, but superior performance can be achieved by properly using image-text pre-training (such as CLIP) and the proposed Log-Sum-Exp Sign (LSE-Sign) loss function. Specifically, using text embeddings of class labels to initialize the linear classifier is essential for leveraging the CLIP pre-trained image encoder. In addition, LSE-Sign loss facilitates learning from multiple labels on an imbalanced dataset by normalizing gradients over all classes in a softmax format. Surprisingly, our detection-free solution achieves 60.5 mAP on the HICO dataset, outperforming the detection-supervised state of the art by 13.4 mAP
166 - Cheng Zou , Bohan Wang , Yue Hu 2021
We propose HOI Transformer to tackle human object interaction (HOI) detection in an end-to-end manner. Current approaches either decouple HOI task into separated stages of object detection and interaction classification or introduce surrogate interac tion problem. In contrast, our method, named HOI Transformer, streamlines the HOI pipeline by eliminating the need for many hand-designed components. HOI Transformer reasons about the relations of objects and humans from global image context and directly predicts HOI instances in parallel. A quintuple matching loss is introduced to force HOI predictions in a unified way. Our method is conceptually much simpler and demonstrates improved accuracy. Without bells and whistles, HOI Transformer achieves $26.61% $ $ AP $ on HICO-DET and $52.9%$ $AP_{role}$ on V-COCO, surpassing previous methods with the advantage of being much simpler. We hope our approach will serve as a simple and effective alternative for HOI tasks. Code is available at https://github.com/bbepoch/HoiTransformer .
Human-Object Interaction (HOI) detection is a task of identifying a set of interactions in an image, which involves the i) localization of the subject (i.e., humans) and target (i.e., objects) of interaction, and ii) the classification of the interac tion labels. Most existing methods have indirectly addressed this task by detecting human and object instances and individually inferring every pair of the detected instances. In this paper, we present a novel framework, referred to by HOTR, which directly predicts a set of <human, object, interaction> triplets from an image based on a transformer encoder-decoder architecture. Through the set prediction, our method effectively exploits the inherent semantic relationships in an image and does not require time-consuming post-processing which is the main bottleneck of existing methods. Our proposed algorithm achieves the state-of-the-art performance in two HOI detection benchmarks with an inference time under 1 ms after object detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا