ﻻ يوجد ملخص باللغة العربية
Since detecting and recognizing individual human or object are not adequate to understand the visual world, learning how humans interact with surrounding objects becomes a core technology. However, convolution operations are weak in depicting visual interactions between the instances since they only build blocks that process one local neighborhood at a time. To address this problem, we learn from human perception in observing HOIs to introduce a two-stage trainable reasoning mechanism, referred to as GID block. GID block breaks through the local neighborhoods and captures long-range dependency of pixels both in global-level and instance-level from the scene to help detecting interactions between instances. Furthermore, we conduct a multi-stream network called GID-Net, which is a human-object interaction detection framework consisting of a human branch, an object branch and an interaction branch. Semantic information in global-level and local-level are efficiently reasoned and aggregated in each of the branches. We have compared our proposed GID-Net with existing state-of-the-art methods on two public benchmarks, including V-COCO and HICO-DET. The results have showed that GID-Net outperforms the existing best-performing methods on both the above two benchmarks, validating its efficacy in detecting human-object interactions.
Human object interaction (HOI) detection is an important task in image understanding and reasoning. It is in a form of HOI triplet <human; verb; object>, requiring bounding boxes for human and object, and action between them for the task completion.
Human-Object Interaction (HOI) detection devotes to learn how humans interact with surrounding objects. Latest end-to-end HOI detectors are short of relation reasoning, which leads to inability to learn HOI-specific interactive semantics for predicti
Multi-instance video object segmentation is to segment specific instances throughout a video sequence in pixel level, given only an annotated first frame. In this paper, we implement an effective fully convolutional networks with U-Net similar struct
Rapid progress has been witnessed for human-object interaction (HOI) recognition, but most existing models are confined to single-stage reasoning pipelines. Considering the intrinsic complexity of the task, we introduce a cascade architecture for a m
Human-Object Interaction (HOI) consists of human, object and implicit interaction/verb. Different from previous methods that directly map pixels to HOI semantics, we propose a novel perspective for HOI learning in an analytical manner. In analogy to