ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpretable collaborative data analysis on distributed data

117   0   0.0 ( 0 )
 نشر من قبل Akira Imakura
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes an interpretable non-model sharing collaborative data analysis method as one of the federated learning systems, which is an emerging technology to analyze distributed data. Analyzing distributed data is essential in many applications such as medical, financial, and manufacturing data analyses due to privacy, and confidentiality concerns. In addition, interpretability of the obtained model has an important role for practical applications of the federated learning systems. By centralizing intermediate representations, which are individually constructed in each party, the proposed method obtains an interpretable model, achieving a collaborative analysis without revealing the individual data and learning model distributed over local parties. Numerical experiments indicate that the proposed method achieves better recognition performance for artificial and real-world problems than individual analysis.



قيم البحث

اقرأ أيضاً

In this paper, we propose a data collaboration analysis method for distributed datasets. The proposed method is a centralized machine learning while training datasets and models remain distributed over some institutions. Recently, data became large a nd distributed with decreasing costs of data collection. If we can centralize these distributed datasets and analyse them as one dataset, we expect to obtain novel insight and achieve a higher prediction performance compared with individual analyses on each distributed dataset. However, it is generally difficult to centralize the original datasets due to their huge data size or regarding a privacy-preserving problem. To avoid these difficulties, we propose a data collaboration analysis method for distributed datasets without sharing the original datasets. The proposed method centralizes only intermediate representation constructed individually instead of the original dataset.
The importance of explainability in machine learning continues to grow, as both neural-network architectures and the data they model become increasingly complex. Unique challenges arise when a models input features become high dimensional: on one han d, principled model-agnostic approaches to explainability become too computationally expensive; on the other, more efficient explainability algorithms lack natural interpretations for general users. In this work, we introduce a framework for human-interpretable explainability on high-dimensional data, consisting of two modules. First, we apply a semantically meaningful latent representation, both to reduce the raw dimensionality of the data, and to ensure its human interpretability. These latent features can be learnt, e.g. explicitly as disentangled representations or implicitly through image-to-image translation, or they can be based on any computable quantities the user chooses. Second, we adapt the Shapley paradigm for model-agnostic explainability to operate on these latent features. This leads to interpretable model explanations that are both theoretically controlled and computationally tractable. We benchmark our approach on synthetic data and demonstrate its effectiveness on several image-classification tasks.
We present GalaxAI - a versatile machine learning toolbox for efficient and interpretable end-to-end analysis of spacecraft telemetry data. GalaxAI employs various machine learning algorithms for multivariate time series analyses, classification, reg ression and structured output prediction, capable of handling high-throughput heterogeneous data. These methods allow for the construction of robust and accurate predictive models, that are in turn applied to different tasks of spacecraft monitoring and operations planning. More importantly, besides the accurate building of models, GalaxAI implements a visualisation layer, providing mission specialists and operators with a full, detailed and interpretable view of the data analysis process. We show the utility and versatility of GalaxAI on two use-cases concerning two different spacecraft: i) analysis and planning of Mars Express thermal power consumption and ii) predicting of INTEGRALs crossings through Van Allen belts.
128 - Kele Xu , Haibo Mi , Dawei Feng 2018
Valuable training data is often owned by independent organizations and located in multiple data centers. Most deep learning approaches require to centralize the multi-datacenter data for performance purpose. In practice, however, it is often infeasib le to transfer all data to a centralized data center due to not only bandwidth limitation but also the constraints of privacy regulations. Model averaging is a conventional choice for data parallelized training, but its ineffectiveness is claimed by previous studies as deep neural networks are often non-convex. In this paper, we argue that model averaging can be effective in the decentralized environment by using two strategies, namely, the cyclical learning rate and the increased number of epochs for local model training. With the two strategies, we show that model averaging can provide competitive performance in the decentralized mode compared to the data-centralized one. In a practical environment with multiple data centers, we conduct extensive experiments using state-of-the-art deep network architectures on different types of data. Results demonstrate the effectiveness and robustness of the proposed method.
We consider machine learning applications that train a model by leveraging data distributed over a trusted network, where communication constraints can create a performance bottleneck. A number of recent approaches propose to overcome this bottleneck through compression of gradient updates. However, as models become larger, so does the size of the gradient updates. In this paper, we propose an alternate approach to learn from distributed data that quantizes data instead of gradients, and can support learning over applications where the size of gradient updates is prohibitive. Our approach leverages the dependency of the computed gradient on data samples, which lie in a much smaller space in order to perform the quantization in the smaller dimension data space. At the cost of an extra gradient computation, the gradient estimate can be refined by conveying the difference between the gradient at the quantized data point and the original gradient using a small number of bits. Lastly, in order to save communication, our approach adds a layer that decides whether to transmit a quantized data sample or not based on its importance for learning. We analyze the convergence of the proposed approach for smooth convex and non-convex objective functions and show that we can achieve order optimal convergence rates with communication that mostly depends on the data rather than the model (gradient) dimension. We use our proposed algorithm to train ResNet models on the CIFAR-10 and ImageNet datasets, and show that we can achieve an order of magnitude savings over gradient compression methods. These communication savings come at the cost of increasing computation at the learning agent, and thus our approach is beneficial in scenarios where communication load is the main problem.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا