ﻻ يوجد ملخص باللغة العربية
Grid adaptation for implicit Large Eddy Simulation (LES) is a non-trivial challenge due to the inherent coupling of the modeling and numerical errors. An attempt to address the challenge first requires a comprehensive assessment and then the development of error estimators to highlight regions that require refinement. Following the work of Schranner et al., a novel approach to estimate the numerical dissipation of the turbulent kinetic energy (TKE) equations is proposed. The presented approach allows the computation of the local numerical dissipation for arbitrary curvilinear grids through a post-processing procedure. This method, as well as empirical and kinetic-energy-based approaches, are employed to estimate the inherent numerical TKE. We incorporate the numerical TKE to evaluate an effective eddy viscosity, an effective Kolmogorov length scale, and an effective TKE to build a family of Index Quality (IQ) based error estimators. The proposed IQ based estimators are then assessed and utilized to show their effectiveness through an application of grid adaptation for the periodic hill test case and transitional flow over the SD 7003 airfoil. Numerical results are validated through a comparison against reference LES and experimental data. Flow over the adapted grids appear better abled to capture pertinent flow features and integrated functions, such as the lift and drag coefficients.
The well-known Prager-Synge identity is valid in $H^1(Omega)$ and serves as a foundation for developing equilibrated a posteriori error estimators for continuous elements. In this paper, we introduce a new inequality, that may be regarded as a genera
We consider the numerical analysis of the inchworm Monte Carlo method, which is proposed recently to tackle the numerical sign problem for open quantum systems. We focus on the growth of the numerical error with respect to the simulation time, for wh
In the present work we show some results on the effect of the Smagorinsky model on the stability of the associated perturbation equation. We show that in the presence of a spectral gap, such that the flow can be decomposed in a large scale with moder
We analyze the Lanczos method for matrix function approximation (Lanczos-FA), an iterative algorithm for computing $f(mathbf{A}) mathbf{b}$ when $mathbf{A}$ is a Hermitian matrix and $mathbf{b}$ is a given mathbftor. Assuming that $f : mathbb{C} righ
Global spectral analysis (GSA) is used as a tool to test the accuracy of numerical methods with the help of canonical problems of convection and convection-diffusion equation which admit exact solutions. Similarly, events in turbulent flows computed