ﻻ يوجد ملخص باللغة العربية
Estimating a depth map from a single RGB image has been investigated widely for localization, mapping, and 3-dimensional object detection. Recent studies on a single-view depth estimation are mostly based on deep Convolutional neural Networks (ConvNets) which require a large amount of training data paired with densely annotated labels. Depth annotation tasks are both expensive and inefficient, so it is inevitable to leverage RGB images which can be collected very easily to boost the performance of ConvNets without depth labels. However, most self-supervised learning algorithms are focused on capturing the semantic information of images to improve the performance in classification or object detection, not in depth estimation. In this paper, we show that existing self-supervised methods do not perform well on depth estimation and propose a gradient-based self-supervised learning algorithm with momentum contrastive loss to help ConvNets extract the geometric information with unlabeled images. As a result, the network can estimate the depth map accurately with a relatively small amount of annotated data. To show that our method is independent of the model structure, we evaluate our method with two different monocular depth estimation algorithms. Our method outperforms the previous state-of-the-art self-supervised learning algorithms and shows the efficiency of labeled data in triple compared to random initialization on the NYU Depth v2 dataset.
Deep neural networks have been widely studied in autonomous driving applications such as semantic segmentation or depth estimation. However, training a neural network in a supervised manner requires a large amount of annotated labels which are expens
We introduce EfficientCL, a memory-efficient continual pretraining method that applies contrastive learning with novel data augmentation and curriculum learning. For data augmentation, we stack two types of operation sequentially: cutoff and PCA jitt
We present a novel approach to joint depth and normal estimation for time-of-flight (ToF) sensors. Our model learns to predict the high-quality depth and normal maps jointly from ToF raw sensor data. To achieve this, we meticulously constructed the f
We present a self-supervised Contrastive Video Representation Learning (CVRL) method to learn spatiotemporal visual representations from unlabeled videos. Our representations are learned using a contrastive loss, where two augmented clips from the sa
Human beings can quickly adapt to environmental changes by leveraging learning experience. However, the poor ability of adapting to dynamic environments remains a major challenge for AI models. To better understand this issue, we study the problem of