ترغب بنشر مسار تعليمي؟ اضغط هنا

Dipole-active collective excitations in moire flat bands

252   0   0.0 ( 0 )
 نشر من قبل Ali Fahimniya
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Collective plasma excitations in moire flat bands display unique properties reflecting strong electron-electron interactions and unusual carrier dynamics in these systems. Unlike the conventional two-dimensional plasmon modes, dispersing as $sqrt{k}$ at low frequencies and plunging into particle-hole continuum at higher frequencies, the moire plasmons pierce through the flat-band continuum and acquire a strong over-the-band character. Due to the complex structure of the moire superlattice unit cell, the over-the-band plasmons feature several distinct branches connected through zone folding in the superlattice Brillouin zone. Using a toy Hubbard model for the correlated insulating order in a flat band, we predict that these high-frequency modes become strongly dipole-active upon the system undergoing charge ordering, with the low-frequency modes gapped out within the correlated insulator gap. Strong dipole moments and sensitivity to charge order make these modes readily accessible by optical measurements, providing a convenient diagnostic of the correlated states.

قيم البحث

اقرأ أيضاً

Moire superlattices in transition metal dichalcogenide (TMD) heterostructures can host novel correlated quantum phenomena due to the interplay of narrow moire flat bands and strong, long-range Coulomb interactions1-5. However, microscopic knowledge o f the atomically-reconstructed moire superlattice and resulting flat bands is still lacking, which is critical for fundamental understanding and control of the correlated moire phenomena. Here we quantitatively study the moire flat bands in three-dimensional (3D) reconstructed WSe2/WS2 moire superlattices by comparing scanning tunneling spectroscopy (STS) of high quality exfoliated TMD heterostructure devices with ab initio simulations of TMD moire superlattices. A strong 3D buckling reconstruction accompanied by large in-plane strain redistribution is identified in our WSe2/WS2 moire heterostructures. STS imaging demonstrates that this results in a remarkably narrow and highly localized K-point moire flat band at the valence band edge of the heterostructure. A series of moire flat bands are observed at different energies that exhibit varying degrees of localization. Our observations contradict previous simplified theoretical models but agree quantitatively with ab initio simulations that fully capture the 3D structural reconstruction. Here the strain redistribution and 3D buckling dominate the effective moire potential and result in moire flat bands at the Brillouin zone K points.
Achieving Bloch oscillations of free carriers under a direct current, a long-sought-after collective many-body behavior, has been challenging due to stringent constraints on the band properties. We argue that the flat bands in moire graphene fulfill the basic requirements for observing Bloch oscillations, offering an appealing alternative to the stacked quantum wells used in previous work aiming to access this regime. Bloch-oscillating moire superlattices emit a comb-like spectrum of incommensurate frequencies, a property of interest for converting direct currents into high-frequency currents and developing broad-band amplifiers in THz domain. The oscillations can be synchronized through coupling to an oscillator mode in a photonic or plasmonic resonator. Phase-coherent collective oscillations in the resonant regime provide a realization of current-pumped THz lasing.
Electron correlation and topology are two central threads of modern condensed matter physics. Semiconductor moire materials provide a highly tunable platform for studies of electron correlation. Correlation-driven phenomena, including the Mott insula tor, generalized Wigner crystals, stripe phases and continuous Mott transition, have been demonstrated. However, nontrivial band topology has remained elusive. Here we report the observation of a quantum anomalous Hall (QAH) effect in AB-stacked MoTe2/WSe2 moire heterobilayers. Unlike in the AA-stacked structures, an out-of-plane electric field controls not only the bandwidth but also the band topology by intertwining moire bands centered at different high-symmetry stacking sites. At half band filling, corresponding to one particle per moire unit cell, we observe quantized Hall resistance, h/e2 (with h and e denoting the Plancks constant and electron charge, respectively), and vanishing longitudinal resistance at zero magnetic field. The electric-field-induced topological phase transition from a Mott insulator to a QAH insulator precedes an insulator-to-metal transition; contrary to most known topological phase transitions, it is not accompanied by a bulk charge gap closure. Our study paves the path for discovery of a wealth of emergent phenomena arising from the combined influence of strong correlation and topology in semiconductor moire materials.
We present a low-energy model describing the reconstruction of the electronic spectrum in twisted bilayers of honeycomb crystals with broken sublattice symmetry. The resulting moire patterns are classified into two families with different symmetry. I n both cases, flat bands appear at relatively large angles, without any magic angle condition. Transitions between them give rise to sharp resonances in the optical absorption spectrum at frequencies well below the gap of the monolayer. Owing to their chiral symmetry, twisted bilayers display circular dichroism, i.e., different absorption of left and right circularly-polarized light. This optical activity is a nonlocal property determined by the stacking. In hexagonal boron nitride, sensitivity to the stacking leads to strikingly different circular dichroism in the two types of moires. Our calculations exemplify how subtle properties of the electronic wavefunctions encoded in current correlations between the layers control physical observables of moire materials.
Electrons with large kinetic energy have a superconducting instability for infinitesimal attractive interactions. Quenching the kinetic energy and creating a flat band renders an infinitesimal repulsive interaction the relevant perturbation. Thus, fl at band systems are an ideal platform to study the competition of superconductivity and magnetism and their possible coexistence. Recent advances in the field of twisted bilayer graphene highlight this in the context of two-dimensional materials. Two dimensions, however, put severe restrictions on the stability of the low-temperature phases due to enhanced fluctuations. Only three-dimensional flat bands can solve the conundrum of combining the exotic flat-band phases with stable order existing at high temperatures. Here, we present a way to generate such flat bands through strain engineering in topological nodal-line semimetals. We present analytical and numerical evidence for this scenario and study the competition of the arising superconducting and magnetic orders as a function of externally controlled parameters. We show that the order parameter is rigid because the quantum geometry of the Bloch wave functions leads to a large superfluid stiffness. Using density-functional theory and numerical tight-binding calculations we further apply our theory to strained rhombohedral graphite and CaAgP materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا