ﻻ يوجد ملخص باللغة العربية
Moire superlattices in transition metal dichalcogenide (TMD) heterostructures can host novel correlated quantum phenomena due to the interplay of narrow moire flat bands and strong, long-range Coulomb interactions1-5. However, microscopic knowledge of the atomically-reconstructed moire superlattice and resulting flat bands is still lacking, which is critical for fundamental understanding and control of the correlated moire phenomena. Here we quantitatively study the moire flat bands in three-dimensional (3D) reconstructed WSe2/WS2 moire superlattices by comparing scanning tunneling spectroscopy (STS) of high quality exfoliated TMD heterostructure devices with ab initio simulations of TMD moire superlattices. A strong 3D buckling reconstruction accompanied by large in-plane strain redistribution is identified in our WSe2/WS2 moire heterostructures. STS imaging demonstrates that this results in a remarkably narrow and highly localized K-point moire flat band at the valence band edge of the heterostructure. A series of moire flat bands are observed at different energies that exhibit varying degrees of localization. Our observations contradict previous simplified theoretical models but agree quantitatively with ab initio simulations that fully capture the 3D structural reconstruction. Here the strain redistribution and 3D buckling dominate the effective moire potential and result in moire flat bands at the Brillouin zone K points.
Transition metal dichalcogenide (TMD) moire heterostructures provide an ideal platform to explore the extended Hubbard model1 where long-range Coulomb interactions play a critical role in determining strongly correlated electron states. This has led
We report the nanoscale conductivity imaging of correlated electronic states in angle-aligned WSe2/WS2 heterostructures using microwave impedance microscopy. The noncontact microwave probe allows us to observe the Mott insulating state with one hole
Stripe phases, in which the rotational symmetry of charge density is spontaneously broken, occur in many strongly correlated systems with competing interactions. One representative example is the copper-oxide superconductors, where stripe order is th
The Wigner crystal state, first predicted by Eugene Wigner in 1934, has fascinated condensed matter physicists for nearly 90 years2-14. Studies of two-dimensional (2D) electron gases first revealed signatures of the Wigner crystal in electrical trans
Moire superlattices provide a powerful tool to engineer novel quantum phenomena in two-dimensional (2D) heterostructures, where the interactions between the atomically thin layers qualitatively change the electronic band structure of the superlattice