ﻻ يوجد ملخص باللغة العربية
Electrons with large kinetic energy have a superconducting instability for infinitesimal attractive interactions. Quenching the kinetic energy and creating a flat band renders an infinitesimal repulsive interaction the relevant perturbation. Thus, flat band systems are an ideal platform to study the competition of superconductivity and magnetism and their possible coexistence. Recent advances in the field of twisted bilayer graphene highlight this in the context of two-dimensional materials. Two dimensions, however, put severe restrictions on the stability of the low-temperature phases due to enhanced fluctuations. Only three-dimensional flat bands can solve the conundrum of combining the exotic flat-band phases with stable order existing at high temperatures. Here, we present a way to generate such flat bands through strain engineering in topological nodal-line semimetals. We present analytical and numerical evidence for this scenario and study the competition of the arising superconducting and magnetic orders as a function of externally controlled parameters. We show that the order parameter is rigid because the quantum geometry of the Bloch wave functions leads to a large superfluid stiffness. Using density-functional theory and numerical tight-binding calculations we further apply our theory to strained rhombohedral graphite and CaAgP materials.
We study the topological properties of magnon excitations in three-dimensional antiferromagnets, where the ground state configuration is invariant under time-reversal followed by space-inversion ($PT$-symmetry). We prove that Dirac points and nodal l
We review the recent, mainly theoretical, progress in the study of topological nodal line semimetals in three dimensions. In these semimetals, the conduction and the valence bands cross each other along a one-dimensional curve in the three-dimensiona
We demonstrate that the concept of moire flat bands can be generalized to achieve electronic band engineering in all three spatial dimensions. For many two dimensional van der Waals materials, twisting two adjacent layers with respect to each other l
The surface of a 3D topological insulator is conducting and the topologically nontrivial nature of the surface states is observed in experiments. It is the aim of this paper to review and analyze experimental observations with respect to the magnetot
We show a holographic model of a strongly coupled topological nodal line semimetal (NLSM) and find that the NLSM phase could go through a quantum phase transition to a topologically trivial state. The dual fermion spectral function shows that there a