ﻻ يوجد ملخص باللغة العربية
Calculating averages with respect to probability measures on submanifolds is often necessary in various application areas such as molecular dynamics, computational statistical mechanics and Bayesian statistics. In recent years, various numerical schemes have been proposed in the literature to study this problem based on appropriate reversible constrained stochastic dynamics. In this paper we present and analyse a non-reversible generalisation of the projection-based scheme developed by one of the authors [ESAIM: M2AN, 54 (2020), pp. 391-430]. This scheme consists of two steps - starting from a state on the submanifold, we first update the state using a non-reversible stochastic differential equation which takes the state away from the submanifold, and in the second step we project the state back onto the manifold using the long-time limit of an ordinary differential equation. We prove the consistency of this numerical scheme and provide quantitative error estimates for estimators based on finite-time running averages. Furthermore, we present theoretical analysis which shows that this scheme outperforms its reversible counterpart in terms of asymptotic variance. We demonstrate our findings on an illustrative test example.
Probability measures supported on submanifolds can be sampled by adding an extra momentum variable to the state of the system, and discretizing the associated Hamiltonian dynamics with some stochastic perturbation in the extra variable. In order to a
The periodization of a stationary Gaussian random field on a sufficiently large torus comprising the spatial domain of interest is the basis of various efficient computational methods, such as the classical circulant embedding technique using the fas
This article is concerned with the discretisation of the Stokes equations on time-dependent domains in an Eulerian coordinate framework. Our work can be seen as an extension of a recent paper by Lehrenfeld & Olshanskii [ESAIM: M2AN, 53(2):585-614, 20
Science and engineering problems subject to uncertainty are frequently both computationally expensive and feature nonsmooth parameter dependence, making standard Monte Carlo too slow, and excluding efficient use of accelerated uncertainty quantificat
The context of this paper is the simulation of parameter-dependent partial differential equations (PDEs). When the aim is to solve such PDEs for a large number of parameter values, Reduced Basis Methods (RBM) are often used to reduce computational co