ﻻ يوجد ملخص باللغة العربية
This article is concerned with the discretisation of the Stokes equations on time-dependent domains in an Eulerian coordinate framework. Our work can be seen as an extension of a recent paper by Lehrenfeld & Olshanskii [ESAIM: M2AN, 53(2):585-614, 2019], where BDF-type time-stepping schemes are studied for a parabolic equation on moving domains. For space discretisation, a geometrically unfitted finite element discretisation is applied in combination with Nitsches method to impose boundary conditions. Physically undefined values of the solution at previous time-steps are extended implicitly by means of so-called ghost penalty stabilisations. We derive a complete a priori error analysis of the discretisation error in space and time, including optimal $L^2(L^2)$-norm error bounds for the velocities. Finally, the theoretical results are substantiated with numerical examples.
The Poisson-Nernst-Planck equations with generalized Frumkin-Butler-Volmer boundary conditions (PNP-FBV) describe ion transport with Faradaic reactions, and have applications in a number of fields. In this article, we develop an adaptive time-steppin
We present a projection-based framework for solving a thermodynamically-consistent Cahn-Hilliard Navier-Stokes system that models two-phase flows. In this work we extend the fully implicit method presented in Khanwale et al. [{it A fully-coupled fram
In this paper, we propose and analyze a first-order and a second-order time-stepping schemes for the anisotropic phase-field dendritic crystal growth model. The proposed schemes are based on an auxiliary variable approach for the Allen-Cahn equation
This article is an account of the NABUCO project achieved during the summer camp CEMRACS 2019 devoted to geophysical fluids and gravity flows. The goal is to construct finite difference approximations of the transport equation with nonzero incoming b
We present a second-order ensemble method based on a blended three-step backward differentiation formula (BDF) timestepping scheme to compute an ensemble of Navier-Stokes equations. Compared with the only existing second-order ensemble method that co