ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid Monte Carlo methods for sampling probability measures on submanifolds

125   0   0.0 ( 0 )
 نشر من قبل Gabriel Stoltz
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Probability measures supported on submanifolds can be sampled by adding an extra momentum variable to the state of the system, and discretizing the associated Hamiltonian dynamics with some stochastic perturbation in the extra variable. In order to avoid biases in the invariant probability measures sampled by discretizations of these stochastically perturbed Hamiltonian dynamics, a Metropolis rejection procedure can be considered. The so-obtained scheme belongs to the class of generalized Hybrid Monte Carlo (GHMC) algorithms. We show here how to generalize to GHMC a procedure suggested by Goodman, Holmes-Cerfon and Zappa for Metropolis random walks on submanifolds, where a reverse projection check is performed to enforce the reversibility of the algorithm for large timesteps and hence avoid biases in the invariant measure. We also provide a full mathematical analysis of such procedures, as well as numerical experiments demonstrating the importance of the reverse projection check on simple toy examples.



قيم البحث

اقرأ أيضاً

Calculating averages with respect to probability measures on submanifolds is often necessary in various application areas such as molecular dynamics, computational statistical mechanics and Bayesian statistics. In recent years, various numerical sche mes have been proposed in the literature to study this problem based on appropriate reversible constrained stochastic dynamics. In this paper we present and analyse a non-reversible generalisation of the projection-based scheme developed by one of the authors [ESAIM: M2AN, 54 (2020), pp. 391-430]. This scheme consists of two steps - starting from a state on the submanifold, we first update the state using a non-reversible stochastic differential equation which takes the state away from the submanifold, and in the second step we project the state back onto the manifold using the long-time limit of an ordinary differential equation. We prove the consistency of this numerical scheme and provide quantitative error estimates for estimators based on finite-time running averages. Furthermore, we present theoretical analysis which shows that this scheme outperforms its reversible counterpart in terms of asymptotic variance. We demonstrate our findings on an illustrative test example.
We propose a novel $hp$-multilevel Monte Carlo method for the quantification of uncertainties in the compressible Navier-Stokes equations, using the Discontinuous Galerkin method as deterministic solver. The multilevel approach exploits hierarchies o f uniformly refined meshes while simultaneously increasing the polynomial degree of the ansatz space. It allows for a very large range of resolutions in the physical space and thus an efficient decrease of the statistical error. We prove that the overall complexity of the $hp$-multilevel Monte Carlo method to compute the mean field with prescribed accuracy is, in best-case, of quadratic order with respect to the accuracy. We also propose a novel and simple approach to estimate a lower confidence bound for the optimal number of samples per level, which helps to prevent overestimating these quantities. The method is in particular designed for application on queue-based computing systems, where it is desirable to compute a large number of samples during one iteration, without overestimating the optimal number of samples. Our theoretical results are verified by numerical experiments for the two-dimensional compressible Navier-Stokes equations. In particular we consider a cavity flow problem from computational acoustics, demonstrating that the method is suitable to handle complex engineering problems.
76 - Yaxian Xu , Ajay Jasra , 2018
In this paper we consider sequential joint state and static parameter estimation given discrete time observations associated to a partially observed stochastic partial differential equation (SPDE). It is assumed that one can only estimate the hidden state using a discretization of the model. In this context, it is known that the multi-index Monte Carlo (MIMC) method of [11] can be used to improve over direct Monte Carlo from the most precise discretizaton. However, in the context of interest, it cannot be directly applied, but rather must be used within another advanced method such as sequential Monte Carlo (SMC). We show how one can use the MIMC method by renormalizing the MI identity and approximating the resulting identity using the SMC$^2$ method of [5]. We prove that our approach can reduce the cost to obtain a given mean square error (MSE), relative to just using SMC$^2$ on the most precise discretization. We demonstrate this with some numerical examples.
Reaction networks are often used to model interacting species in fields such as biochemistry and ecology. When the counts of the species are sufficiently large, the dynamics of their concentrations are typically modeled via a system of differential e quations. However, when the counts of some species are small, the dynamics of the counts are typically modeled stochastically via a discrete state, continuous time Markov chain. A key quantity of interest for such models is the probability mass function of the process at some fixed time. Since paths of such models are relatively straightforward to simulate, we can estimate the probabilities by constructing an empirical distribution. However, the support of the distribution is often diffuse across a high-dimensional state space, where the dimension is equal to the number of species. Therefore generating an accurate empirical distribution can come with a large computational cost. We present a new Monte Carlo estimator that fundamentally improves on the classical Monte Carlo estimator described above. It also preserves much of classical Monte Carlos simplicity. The idea is basically one of conditional Monte Carlo. Our conditional Monte Carlo estimator has two parameters, and their choice critically affects the performance of the algorithm. Hence, a key contribution of the present work is that we demonstrate how to approximate optimal values for these parameters in an efficient manner. Moreover, we provide a central limit theorem for our estimator, which leads to approximate confidence intervals for its error.
We describe and analyze some Monte Carlo methods for manifolds in Euclidean space defined by equality and inequality constraints. First, we give an MCMC sampler for probability distributions defined by un-normalized densities on such manifolds. The s ampler uses a specific orthogonal projection to the surface that requires only information about the tangent space to the manifold, obtainable from first derivatives of the constraint functions, hence avoiding the need for curvature information or second derivatives. Second, we use the sampler to develop a multi-stage algorithm to compute integrals over such manifolds. We provide single-run error estimates that avoid the need for multiple independent runs. Computational experiments on various test problems show that the algorithms and error estimates work in practice. The method is applied to compute the entropies of different sticky hard sphere systems. These predict the temperature or interaction energy at which loops of hard sticky spheres become preferable to chains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا