ﻻ يوجد ملخص باللغة العربية
Probability measures supported on submanifolds can be sampled by adding an extra momentum variable to the state of the system, and discretizing the associated Hamiltonian dynamics with some stochastic perturbation in the extra variable. In order to avoid biases in the invariant probability measures sampled by discretizations of these stochastically perturbed Hamiltonian dynamics, a Metropolis rejection procedure can be considered. The so-obtained scheme belongs to the class of generalized Hybrid Monte Carlo (GHMC) algorithms. We show here how to generalize to GHMC a procedure suggested by Goodman, Holmes-Cerfon and Zappa for Metropolis random walks on submanifolds, where a reverse projection check is performed to enforce the reversibility of the algorithm for large timesteps and hence avoid biases in the invariant measure. We also provide a full mathematical analysis of such procedures, as well as numerical experiments demonstrating the importance of the reverse projection check on simple toy examples.
Calculating averages with respect to probability measures on submanifolds is often necessary in various application areas such as molecular dynamics, computational statistical mechanics and Bayesian statistics. In recent years, various numerical sche
We propose a novel $hp$-multilevel Monte Carlo method for the quantification of uncertainties in the compressible Navier-Stokes equations, using the Discontinuous Galerkin method as deterministic solver. The multilevel approach exploits hierarchies o
In this paper we consider sequential joint state and static parameter estimation given discrete time observations associated to a partially observed stochastic partial differential equation (SPDE). It is assumed that one can only estimate the hidden
Reaction networks are often used to model interacting species in fields such as biochemistry and ecology. When the counts of the species are sufficiently large, the dynamics of their concentrations are typically modeled via a system of differential e
We describe and analyze some Monte Carlo methods for manifolds in Euclidean space defined by equality and inequality constraints. First, we give an MCMC sampler for probability distributions defined by un-normalized densities on such manifolds. The s