ﻻ يوجد ملخص باللغة العربية
Heat generated by spin currents in spintronics-based devices is typically much less than that generated by charge current flows in conventional electronic devices. However, the conventional approaches for excitation of spin currents based on spin-pumping and spin Hall effect are limited in efficiency which restricts their application for viable spintronic devices. We propose a novel type of photonic-crystal (PC) based structures for efficient and tunable optically-induced spin current generation via the Spin Seebeck and inverse spin Hall effects. It is experimentally demonstrated that optical surface modes localized at the PC surface covered by ferromagnetic layer and materials with giant spin-orbit coupling (SOC) notably increase the efficiency of the optically-induced spin current generation and provides its tunability by modifying light wavelength or angle of incidence. Up to 100% of the incident light power can be transferred to heat within the SOC layer and, therefore, to spin current. Importantly, high efficiency becomes accessible even for ultra-thin SOC layers. Moreover, surface patterning of the PC-based spintronic nanostructure allows local generation of spin currents at the pattern scales rather than diameter of the laser beam.
We study the nonlocal spin and charge current generation in a finite metallic element on the surface of magnetic insulators such as tcb{yttrium iron garnet} due to the absorption of the magnetic surface plasmon (MSP). Whereas a surface plasmon is com
We suggest a new practical scheme for the direct detection of pure spin current by using the two-color Faraday rotation of optical quantum interference process (QUIP) in a semiconductor system. We demonstrate theoretically that the Faraday rotation o
We perform 3D micromagnetic simulations of current-driven magnetization dynamics in nanoscale exchange biased spin-valves that take account of (i) back action of spin-transfer torque on the pinned layer, (ii) non-linear damping and (iii) random therm
Spin current injection from sputtered yttrium iron garnet (YIG) films into an adjacent platinum layer has been investigated by means of the spin pumping and the spin Seebeck effects. Films with a thickness of 83 and 96 nanometers were fabricated by o
The engineered spin structures recently built and measured in scanning tunneling microscope experiments are calculated using density functional theory. By determining the precise local structure around the surface impurities, we find the Mn atoms can