ﻻ يوجد ملخص باللغة العربية
We study the nonlocal spin and charge current generation in a finite metallic element on the surface of magnetic insulators such as tcb{yttrium iron garnet} due to the absorption of the magnetic surface plasmon (MSP). Whereas a surface plasmon is completely reflected by a metal, tcb{an} MSP tcb{can be} absorbed tcb{due to the absence of backward states}. The tcb{injection of} MSP generates a voltage in the longitudinal direction parallel to the wave vector, tcb{with the voltage} proportional to input power. If the metal is a ferromagnet, a spin current can also be tcb{induced} in the longitudinal direction. Our tcb{results provide a way to improve upon} integrated circuits of spintronics and spin wave logic devices.
We investigate the spin and charge densities of surface states of the three-dimensional topological insulator $Bi_2Se_3$, starting from the continuum description of the material [Zhang {em et al.}, Nat. Phys. 5, 438 (2009)]. The spin structure on sur
Heat generated by spin currents in spintronics-based devices is typically much less than that generated by charge current flows in conventional electronic devices. However, the conventional approaches for excitation of spin currents based on spin-pum
Here we present an all-optical plasmon coupling scheme, utilising the intrinsic nonlinear optical response of graphene. We demonstrate coupling of free-space, visible light pulses to the surface plasmons in a planar, un-patterned graphene sheet by us
We study propagation of the Gaussian beam of spin waves and its reflection from the edge of thin yttrium-iron-garnet film with in-plane magnetization perpendicular to this edge. We have performed micromagnetic simulations supported by analytical calc
Electromagnetic fields bound tightly to charge carriers in a two-dimensional sheet, namely surface plasmons, are shielded by metallic plates that are a part of a device. It is shown that for epitaxial graphenes, the propagation velocity of surface pl