ﻻ يوجد ملخص باللغة العربية
We consider the flow of a viscous incompressible fluid through a porous medium. We allow the permeability of the medium to depend exponentially on the pressure and provide an analysis for this model. We study a splitting formulation where a convection diffusion problem is used to define the permeability, which is then used in a linear Darcy equation. We also study a discretization of this problem, and provide an error analysis for it.
We study a commonly-used second-kind boundary-integral equation for solving the Helmholtz exterior Neumann problem at high frequency, where, writing $Gamma$ for the boundary of the obstacle, the relevant integral operators map $L^2(Gamma)$ to itself.
We are interested in the classical ill-posed Cauchy problem for the Laplace equation. One method to approximate the solution associated with compatible data consists in considering a family of regularized well-posed problems depending on a small para
We consider a free boundary problem on three-dimensional cones depending on a parameter c and study when the free boundary is allowed to pass through the vertex of the cone. Combining analysis and computer-assisted proof, we show that when c is less
Nonlinear quantum graphs are metric graphs equipped with a nonlinear Schr{o}dinger equation. Whereas in the last ten years they have known considerable developments on the theoretical side, their study from the numerical point of view remains in its
The main aim of this paper is to solve an inverse source problem for a general nonlinear hyperbolic equation. Combining the quasi-reversibility method and a suitable Carleman weight function, we define a map of which fixed point is the solution to th