ترغب بنشر مسار تعليمي؟ اضغط هنا

High-frequency estimates on boundary integral operators for the Helmholtz exterior Neumann problem

134   0   0.0 ( 0 )
 نشر من قبل Pierre Marchand
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a commonly-used second-kind boundary-integral equation for solving the Helmholtz exterior Neumann problem at high frequency, where, writing $Gamma$ for the boundary of the obstacle, the relevant integral operators map $L^2(Gamma)$ to itself. We prove new frequency-explicit bounds on the norms of both the integral operator and its inverse. The bounds on the norm are valid for piecewise-smooth $Gamma$ and are sharp, and the bounds on the norm of the inverse are valid for smooth $Gamma$ and are observed to be sharp at least when $Gamma$ is curved. Together, these results give bounds on the condition number of the operator on $L^2(Gamma)$; this is the first time $L^2(Gamma)$ condition-number bounds have been proved for this operator for obstacles other than balls.



قيم البحث

اقرأ أيضاً

148 - Dean Baskin , Euan Spence , 2015
We consider three problems for the Helmholtz equation in interior and exterior domains in R^d (d=2,3): the exterior Dirichlet-to-Neumann and Neumann-to-Dirichlet problems for outgoing solutions, and the interior impedance problem. We derive sharp est imates for solutions to these problems that, in combination, give bounds on the inverses of the combined-field boundary integral operators for exterior Helmholtz problems.
In this paper we develop an existence theory for the nonlinear initial-boundary value problem with singular diffusion $partial_t u = text{div}(k(x) abla G(u))$, $u|_{t=0}=u_0$ with Neumann boundary conditions $k(x) abla G(u)cdot u = 0$. Here $xin Bs ubset mathbb{R}^d$, a bounded open set with locally Lipchitz boundary, and with $ u$ as the unit outer normal. The function $G$ is Lipschitz continuous and nondecreasing, while $k(x)$ is diagonal matrix. We show that any two weak entropy solutions $u$ and $v$ satisfy $Vert{u(t)-v(t)}Vert_{L^1(B)}le Vert{u|_{t=0}-v|_{t=0}}Vert_{L^1(B)}e^{Ct}$, for almost every $tge 0$, and a constant $C=C(k,G,B)$. If we restrict to the case when the entries $k_i$ of $k$ depend only on the corresponding component, $k_i=k_i(x_i)$, we show that there exists an entropy solution, thus establishing in this case that the problem is well-posed in the sense of Hadamard.
Over the last ten years, results from [Melenk-Sauter, 2010], [Melenk-Sauter, 2011], [Esterhazy-Melenk, 2012], and [Melenk-Parsania-Sauter, 2013] decomposing high-frequency Helmholtz solutions into low- and high-frequency components have had a large i mpact in the numerical analysis of the Helmholtz equation. These results have been proved for the constant-coefficient Helmholtz equation in either the exterior of a Dirichlet obstacle or an interior domain with an impedance boundary condition. Using the Helffer-Sjostrand functional calculus, this paper proves analogous decompositions for scattering problems fitting into the black-box scattering framework of Sjostrand-Zworski, thus covering Helmholtz problems with variable coefficients, impenetrable obstacles, and penetrable obstacles all at once. In particular, these results allow us to prove new frequency-explicit convergence results for (i) the $hp$-finite-element method applied to the variable coefficient Helmholtz equation in the exterior of a Dirichlet obstacle, when the obstacle and coefficients are analytic, and (ii) the $h$-finite-element method applied to the Helmholtz penetrable-obstacle transmission problem.
We are interested in the classical ill-posed Cauchy problem for the Laplace equation. One method to approximate the solution associated with compatible data consists in considering a family of regularized well-posed problems depending on a small para meter $varepsilon>0$. In this context, in order to prove convergence of finite elements methods, it is necessary to get regularity results of the solutions to these regularized problems which hold uniformly in $varepsilon$. In the present work, we obtain these results in smooth domains and in 2D polygonal geometries. In presence of corners, due the particular structure of the regularized problems, classical techniques `a la Grisvard do not work and instead, we apply the Kondratiev approach. We describe the procedure in detail to keep track of the dependence in $varepsilon$ in all the estimates. The main originality of this study lies in the fact that the limit problem is ill-posed in any framework.
We consider a free boundary problem on three-dimensional cones depending on a parameter c and study when the free boundary is allowed to pass through the vertex of the cone. Combining analysis and computer-assisted proof, we show that when c is less than 0.43, the free boundary may pass through the vertex of the cone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا