ﻻ يوجد ملخص باللغة العربية
Nonlinear quantum graphs are metric graphs equipped with a nonlinear Schr{o}dinger equation. Whereas in the last ten years they have known considerable developments on the theoretical side, their study from the numerical point of view remains in its early stages. The goal of this paper is to present the Grafidi library, a Python library which has been developed with the numerical simulation of nonlinear Schr{o}dinger equations on graphs in mind. We will show how, with the help of the Grafidi library, one can implement the popular normalized gradient flow and nonlinear conjugate gradient flow methods to compute ground states of a nonlinear quantum graph. We will also simulate the dynamics of the nonlinear Schr{o}dinger equation with a Crank-Nicolson relaxation scheme and a Strang splitting scheme. Finally, in a series of numerical experiments on various types of graphs, we will compare the outcome of our numerical calculations for ground states with the existing theoretical results, thereby illustrating the versatility and efficiency of our implementations in the framework of the Grafidi library.
We introduce and implement a method to compute stationary states of nonlinear Schrodinger equations on metric graphs. Stationary states are obtained as local minimizers of the nonlinear Schrodinger energy at fixed mass. Our method is based on a norma
We propose a new model that describes the dynamics of epidemic spreading on connected graphs. Our model consists in a PDE-ODE system where at each vertex of the graph we have a standard SIR model and connexions between vertices are given by heat equa
We present a numerical study of solutions to the $2d$ focusing nonlinear Schrodinger equation in the exterior of a smooth, compact, strictly convex obstacle, with Dirichlet boundary conditions with cubic and quintic powers of nonlinearity. We study t
In the article a convergent numerical method for conservative solutions of the Hunter--Saxton equation is derived. The method is based on piecewise linear projections, followed by evolution along characteristics where the time step is chosen in order
We derive boundary conditions and estimates based on the energy and entropy analysis of systems of the nonlinear shallow water equations in two spatial dimensions. It is shown that the energy method provides more details, but is fully consistent with