ﻻ يوجد ملخص باللغة العربية
The detection and characterization of partial discharge (PD) are crucial for the insulation diagnosis of overhead lines with covered conductors. With the release of a large dataset containing thousands of naturally obtained high-frequency voltage signals, data-driven analysis of fault-related PD patterns on an unprecedented scale becomes viable. The high diversity of PD patterns and background noise interferences motivates us to design an innovative pulse shape characterization method based on clustering techniques, which can dynamically identify a set of representative PD-related pulses. Capitalizing on those pulses as referential patterns, we construct insightful features and develop a novel machine learning model with a superior detection performance for early-stage covered conductor faults. The presented model outperforms the winning model in a Kaggle competition and provides the state-of-the-art solution to detect real-time disturbances in the field.
Given nonstationary data, one generally wants to extract the trend from the noise by smoothing or filtering. However, it is often important to delineate a third intermediate category, that we call high frequency (HF) features: this is the case in our
This letter presents a novel high impedance fault (HIF) detection approach using a convolutional neural network (CNN). Compared to traditional artificial neural networks, a CNN offers translation invariance and it can accurately detect HIFs in spite
In this paper, we propose a machine learning (ML) based physical layer receiver solution for demodulating OFDM signals that are subject to a high level of nonlinear distortion. Specifically, a novel deep learning based convolutional neural network re
The cost of wind energy can be reduced by using SCADA data to detect faults in wind turbine components. Normal behavior models are one of the main fault detection approaches, but there is a lack of consensus in how different input features affect the
Cough is a common symptom of respiratory and lung diseases. Cough detection is important to prevent, assess and control epidemic, such as COVID-19. This paper proposes a model to detect cough events from cough audio signals. The models are trained by