ﻻ يوجد ملخص باللغة العربية
Huge overhead of beam training poses a significant challenge to mmWave communications. To address this issue, beam tracking has been widely investigated whereas existing methods are hard to handle serious multipath interference and non-stationary scenarios. Inspired by the spatial similarity between low-frequency and mmWave channels in non-standalone architectures, this paper proposes to utilize prior low-frequency information to predict the optimal mmWave beam, where deep learning is adopted to enhance the prediction accuracy. Specifically, periodically estimated low-frequency channel state information (CSI) is applied to track the movement of user equipment, and timing offset indicator is proposed to indicate the instant of mmWave beam training relative to low-frequency CSI estimation. Meanwhile, long-short term memory networks based dedicated models are designed to implement the prediction. Simulation results show that our proposed scheme can achieve higher beamforming gain than the conventional methods while requiring little overhead of mmWave beam training.
This paper presents DeepIA, a deep learning solution for faster and more accurate initial access (IA) in 5G millimeter wave (mmWave) networks when compared to conventional IA. By utilizing a subset of beams in the IA process, DeepIA removes the need
Deep learning provides powerful means to learn from spectrum data and solve complex tasks in 5G and beyond such as beam selection for initial access (IA) in mmWave communications. To establish the IA between the base station (e.g., gNodeB) and user e
Millimeter wave channels exhibit structure that allows beam alignment with fewer channel measurements than exhaustive beam search. From a compressed sensing (CS) perspective, the received channel measurements are usually obtained by multiplying a CS
Huge overhead of beam training imposes a significant challenge in millimeter-wave (mmWave) wireless communications. To address this issue, in this paper, we propose a wide beam based training approach to calibrate the narrow beam direction according
Beam alignment - the process of finding an optimal directional beam pair - is a challenging procedure crucial to millimeter wave (mmWave) communication systems. We propose a novel beam alignment method that learns a site-specific probing codebook and