ﻻ يوجد ملخص باللغة العربية
Beam alignment - the process of finding an optimal directional beam pair - is a challenging procedure crucial to millimeter wave (mmWave) communication systems. We propose a novel beam alignment method that learns a site-specific probing codebook and uses the probing codebook measurements to predict the optimal narrow beam. An end-to-end neural network (NN) architecture is designed to jointly learn the probing codebook and the beam predictor. The learned codebook consists of site-specific probing beams that can capture particular characteristics of the propagation environment. The proposed method relies on beam sweeping of the learned probing codebook, does not require additional context information, and is compatible with the beam sweeping-based beam alignment framework in 5G. Using realistic ray-tracing datasets, we demonstrate that the proposed method can achieve high beam alignment accuracy and signal-to-noise ratio (SNR) while significantly - by roughly a factor of 3 in our setting - reducing the beam sweeping complexity and latency.
Millimeter wave channels exhibit structure that allows beam alignment with fewer channel measurements than exhaustive beam search. From a compressed sensing (CS) perspective, the received channel measurements are usually obtained by multiplying a CS
This paper presents DeepIA, a deep learning solution for faster and more accurate initial access (IA) in 5G millimeter wave (mmWave) networks when compared to conventional IA. By utilizing a subset of beams in the IA process, DeepIA removes the need
This article investigates beam alignment for multi-user millimeter wave (mmWave) massive multi-input multi-output system. Unlike the existing works using machine learning (ML), an alignment method with partial beams using ML (AMPBML) is proposed with
Huge overhead of beam training poses a significant challenge to mmWave communications. To address this issue, beam tracking has been widely investigated whereas existing methods are hard to handle serious multipath interference and non-stationary sce
Deep learning provides powerful means to learn from spectrum data and solve complex tasks in 5G and beyond such as beam selection for initial access (IA) in mmWave communications. To establish the IA between the base station (e.g., gNodeB) and user e