ﻻ يوجد ملخص باللغة العربية
Huge overhead of beam training imposes a significant challenge in millimeter-wave (mmWave) wireless communications. To address this issue, in this paper, we propose a wide beam based training approach to calibrate the narrow beam direction according to the channel power leakage. To handle the complex nonlinear properties of the channel power leakage, deep learning is utilized to predict the optimal narrow beam directly. Specifically, three deep learning assisted calibrated beam training schemes are proposed. The first scheme adopts convolution neural network to implement the prediction based on the instantaneous received signals of wide beam training. We also perform the additional narrow beam training based on the predicted probabilities for further beam direction calibrations. However, the first scheme only depends on one wide beam training, which lacks the robustness to noise. To tackle this problem, the second scheme adopts long-short term memory (LSTM) network for tracking the movement of users and calibrating the beam direction according to the received signals of prior beam training, in order to enhance the robustness to noise. To further reduce the overhead of wide beam training, our third scheme, an adaptive beam training strategy, selects partial wide beams to be trained based on the prior received signals. Two criteria, namely, optimal neighboring criterion and maximum probability criterion, are designed for the selection. Furthermore, to handle mobile scenarios, auxiliary LSTM is introduced to calibrate the directions of the selected wide beams more precisely. Simulation results demonstrate that our proposed schemes achieve significantly higher beamforming gain with smaller beam training overhead compared with the conventional and existing deep-learning based counterparts.
Intelligent reflecting surface (IRS) has emerged as a competitive solution to address blockage issues in millimeter wave (mmWave) and Terahertz (THz) communications due to its capability of reshaping wireless transmission environments. Nevertheless,
In this work, we propose a beam training codebook for Reconfigurable Intelligent Surface (RIS) assisted mmWave uplink communication. Beam training procedure is important to establish a reliable link between user node and Access point (AP). A codebook
Millimeter-wave is one of the technologies powering the new generation of wireless communication systems. To compensate the high path-loss, millimeter-wave devices need to use highly directional antennas. Consequently, beam misalignment causes strong
This article investigates beam alignment for multi-user millimeter wave (mmWave) massive multi-input multi-output system. Unlike the existing works using machine learning (ML), an alignment method with partial beams using ML (AMPBML) is proposed with
Covert communication prevents legitimate transmission from being detected by a warden while maintaining certain covert rate at the intended user. Prior works have considered the design of covert communication over conventional low-frequency bands, bu