ﻻ يوجد ملخص باللغة العربية
Resonances in optical cavities have been used to manipulate light propagation, enhance light-matter interaction, modulate quantum states, and so on. However, in traditional cavities, the permittivity contrast in and out the cavity is not so high. Recently, zero-index materials (ZIMs) with unique properties and specific applications have attracted great interest. By putting optical cavity into ZIMs, the extreme circumstance with infinite permittivity contrast can be obtained. Here, we theoretically study Mie resonances of dielectric cavities embedded in ZIMs with $varepsilon approx 0$, or $mu approx 0$, or $(varepsilon,mu) approx 0$. Owing to ultrahigh contrast ratio of $varepsilon$ or $mu$ in and out the cavities, with fixed wavelength, a series of Mie resonances with the same angular mode number $l$ but with different cavity radii are obtained; more interestingly, its $2^l$-TM (TE) and $2^{l+1}$-TE (TM) modes have the same resonant solution for the cavity in $varepsilon approx 0$ ($mu approx 0$) material, and the resonance degeneracy also occurs between $2^l$-TM mode and $2^l$-TE mode for $(varepsilon,mu) approx 0$ material. We further use resonance degeneracy to modulate the Purcell effect of quantum emitter inside the cavity. The results of resonance nesting and degeneracy will provide an additional view or freedom to enhance the performance of cavity behaviors.
Materials with a zero refractive index support electromagnetic modes that exhibit stationary phase profiles. While such materials have been realized across the visible and near-infrared spectral range, radiative and dissipative optical losses have hi
Dielectric optical nanoantennas play an important role in color displays, metasurface holograms, and wavefront shaping applications. They usually exploit Mie resonances as supported on nanostructures with high refractive index, such as Si and TiO2. H
In this research, we report the experimental evidence of the directional Fano resonances at the scattering of a plane, linearly polarized electromagnetic wave by a homogeneous dielectric sphere with high refractive index and low losses. We observe a
Future technologies underpinning high-performance optical communications, ultrafast computations and compact biosensing will rely on densely packed reconfigurable optical circuitry based on nanophotonics. For many years, plasmonics was considered as
Photonic cavities are valued in current research owing to the multitude of linear and nonlinear effects arising from densely confined light. Cavity designs consisting of low loss dielectric materials can achieve significant light confinement, competi