ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-loss Zero-Index Materials

291   0   0.0 ( 0 )
 نشر من قبل Haoning Tang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Materials with a zero refractive index support electromagnetic modes that exhibit stationary phase profiles. While such materials have been realized across the visible and near-infrared spectral range, radiative and dissipative optical losses have hindered their development. We reduce losses in zero-index, on-chip photonic crystals by introducing high-Q resonances via resonance-trapped and symmetry-protected states. Using these approaches, we experimentally obtain quality factors of 2.6*10^3 and 7.8*10^3 at near-infrared wavelengths, corresponding to an order-of-magnitude reduction in propagation loss over previous designs. Our work presents a viable approach to fabricate zero-index on-chip nanophotonic devices with low-loss.



قيم البحث

اقرأ أيضاً

Monolayer transition metal dichalcogenides with direct bandgaps are emerging candidates for microelectronics, nano-photonics, and optoelectronics. Transferred onto photonic integrated circuits (PICs), these semiconductor materials have enabled new cl asses of light-emitting diodes, modulators and photodetectors, that could be amenable to wafer-scale manufacturing. For integrated photonic devices, the optical losses of the PICs are critical. In contrast to silicon, silicon nitride (Si3N4) has emerged as a low-loss integrated platform with a wide transparency window from ultraviolet to mid-infrared and absence of two-photon absorption at telecommunication bands. Moreover, it is suitable for nonlinear integrated photonics due to its high Kerr nonlinearity and high-power handing capability. These features of Si3N4 are intrinsically beneficial for nanophotonics and optoelectronics applications. Here we report a low-loss integrated platform incorporating monolayer molybdenum ditelluride (1L-MoTe2) with Si3N4 photonic microresonators. We show that, with the 1L-MoTe2, microresonator quality factors exceeding 3 million in the telecommunication O-band to E-band are maintained. We further investigate the change of microresonator dispersion and resonance shift due to the presence of 1L-MoTe2, and extrapolate the optical loss introduced by 1L-MoTe2 in the telecommunication bands, out of the excitonic transition region. Our work presents a key step for low-loss, hybrid PICs with layered semiconductors without using heterogeneous wafer bonding.
The nonlinear optical response of materials is the foundation upon which applications such as frequency conversion, all-optical signal processing, molecular spectroscopy, and nonlinear microscopy are built. However, the utility of all such parametric nonlinear optical processes is hampered by phase-matching requirements. Quasi-phase-matching, birefringent phase matching, and higher-order-mode phase matching have all been developed to address this constraint, but the methods demonstrated to date suffer from the inconvenience of only being phase-matched for a single, specific arrangement of beams, typically co-propagating, resulting in cumbersome experimental configurations and large footprints for integrated devices. Here, we experimentally demonstrate that these phase-matching requirements may be satisfied in a parametric nonlinear optical process for multiple, if not all, configurations of input and output beams when using low-index media. Our measurement constitutes the first experimental observation of direction-independent phase matching for a medium sufficiently long for phase matching concerns to be relevant. We demonstrate four-wave mixing from spectrally distinct co- and counter-propagating pump and probe beams, the backward-generation of a nonlinear signal, and excitation by an out-of-plane probe beam. These results explicitly show that the unique properties of low-index media relax traditional phase-matching constraints, which can be exploited to facilitate nonlinear interactions and miniaturize nonlinear devices, thus adding to the established exceptional properties of low-index materials.
Resonances in optical cavities have been used to manipulate light propagation, enhance light-matter interaction, modulate quantum states, and so on. However, in traditional cavities, the permittivity contrast in and out the cavity is not so high. Rec ently, zero-index materials (ZIMs) with unique properties and specific applications have attracted great interest. By putting optical cavity into ZIMs, the extreme circumstance with infinite permittivity contrast can be obtained. Here, we theoretically study Mie resonances of dielectric cavities embedded in ZIMs with $varepsilon approx 0$, or $mu approx 0$, or $(varepsilon,mu) approx 0$. Owing to ultrahigh contrast ratio of $varepsilon$ or $mu$ in and out the cavities, with fixed wavelength, a series of Mie resonances with the same angular mode number $l$ but with different cavity radii are obtained; more interestingly, its $2^l$-TM (TE) and $2^{l+1}$-TE (TM) modes have the same resonant solution for the cavity in $varepsilon approx 0$ ($mu approx 0$) material, and the resonance degeneracy also occurs between $2^l$-TM mode and $2^l$-TE mode for $(varepsilon,mu) approx 0$ material. We further use resonance degeneracy to modulate the Purcell effect of quantum emitter inside the cavity. The results of resonance nesting and degeneracy will provide an additional view or freedom to enhance the performance of cavity behaviors.
Broadband low loss and ultra-low crosstalk waveguide crossings are a crucial component for photonic integrated circuits to allow a higher integration density of functional components and an increased flexibility in the layout. We report the design of optimized silicon nitride waveguide crossings based on multimode interferometer structures for intersecting light paths of TE/TE-like, TM/TM-like and TE/TM-like polarized light in the near infrared wavelength region of 790 nm to 890 nm. The crossing design for diverse polarization modes facilitates dual polarization operation on a single chip. For all configurations the loss of a single crossing was measured to be 0.05 dB at 840 nm. Within the 100 nm bandwidth losses stayed below 0.16 dB. The crosstalk was estimated to be on the order of -60 dB by means of 3D finite difference time domain simulations.
Phase change materials (PCMs) have long been used as a storage medium in rewritable compact disk and later in random access memory. In recent years, the integration of PCMs with nanophotonic structures has introduced a new paradigm for non-volatile r econfigurable optics. However, the high loss of the archetypal PCM Ge2Sb2Te5 in both visible and telecommunication wavelengths has fundamentally limited its applications. Sb2S3 has recently emerged as a wide-bandgap PCM with transparency windows ranging from 610nm to near-IR. In this paper, the strong optical phase modulation and low optical loss of Sb2S3 are experimentally demonstrated for the first time in integrated photonic platforms at both 750nm and 1550nm. As opposed to silicon, the thermo-optic coefficient of Sb2S3 is shown to be negative, making the Sb2S3-Si hybrid platform less sensitive to thermal fluctuation. Finally, a Sb2S3 integrated non-volatile microring switch is demonstrated which can be tuned electrically between a high and low transmission state with a contrast over 30dB. Our work experimentally verified the prominent phase modification and low loss of Sb2S3 in wavelength ranges relevant for both solid-state quantum emitter and telecommunication, enabling potential applications such as optical field programmable gate array, post-fabrication trimming, and large-scale integrated quantum photonic network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا