ﻻ يوجد ملخص باللغة العربية
In top squark (stop) searches with a compressed spectrum, it is very helpful to consider the stop production recoiling against a hard jet from the initial state radiation to obtain a significant amount of missing transverse energy. In particular, the kinematic variable $R_M$ which measures the ratio of the lightest neutralino mass and the stop mass proved to be crucial in separating the signals from the backgrounds in both the all-hadronic decay and the semileptonic decay of the stops. Here we generalize the search method to the dileptonic stop decays. In this case, due to the two missing neutrinos, there are not enough kinematic constraint equations to solve for the $R_M$ variable exactly, but only render an allowed interval consistent with the event. However, we show that the minimum and the maximum values of this allowed interval still provide useful variables in discriminating signals from the backgrounds. Although in the traditional stop decay to a top quark and the lightest neutralino, the dileptonic mode is not as competitive due to its small branching ratio, it becomes the main search mode if the stops decay through the charginos and sleptons with a compressed spectrum. We show that with the new variables, the dileptonic search of the stop can cover regions of the parameter space which have not been constrained before.
The top quark is the heaviest known elementary particle of the Standard Model (SM) of particle physics and, therefore, it is expected to have large couplings to hypothetical new physics in many models beyond the SM (BSM). Various studies have predict
The top squarks (stops) may be the most wanted particles after the Higgs boson discovery. The searches for the lightest stop have put strong constraints on its mass. However, there is still a search gap in the low mass region if the spectrum of the s
Color-singlet gauge bosons with renormalizable couplings to quarks but not to leptons must interact with additional fermions (anomalons) required to cancel the gauge anomalies. Analyzing the decays of such leptophobic bosons into anomalons, I show th
The LHC searches for light compressed stop squarks have resulted in considerable bounds in the case where the stop decays to a neutralino and a charm quark. However, in the case where the stop decays to a neutralino, a bottom quark and two fermions v
A significant part of the parameter space for light stop squarks still remains unconstrained by collider searches. For both R-Parity Conserving (RPC) and R-Parity Violating (RPV) scenarios there are regions in which the stop mass is around or below t