ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron - mirror neutron mixing and neutron stars

78   0   0.0 ( 0 )
 نشر من قبل Zurab Berezhiani
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The oscillation of neutrons $n$ into mirror neutrons $n$, their mass degenerate partners from dark mirror sector, can have interesting implications for neutron stars: an ordinary neutron star could gradually transform into a mixed star consisting in part of mirror dark matter. Mixed stars can be detectable as twin partners of ordinary neutron stars: namely, there can exist compact stars with the same masses but having different radii. For a given equation of state (identical between the ordinary and mirror components), the mass and radius of a mixed star depend on the proportion between the ordinary and mirror components in its interior which in turn depends on its age. If $50 % - 50%$ proportion between two fractions can be reached asymptotically in time, then the maximum mass of such maximally mixed stars should be $sqrt2$ times smaller than that of ordinary neutron star while the stars exceeding a critical mass value $M^{rm max}_{NS}/sqrt2$ should collapse in black holes after certain time. We evaluate the evolution time and discuss the implications of $n-n$ transition for the pulsar observations as well as for the gravitational waves from the neutron star mergers and associated electromagnetic signals.



قيم البحث

اقرأ أيضاً

The fundamental nature of dark matter is entirely unknown. A compelling candidate is Twin Higgs mirror matter, invisible hidden-sector cousins of the Standard Model particles and forces. This generically predicts mirror neutron stars, degenerate obje cts made entirely of mirror nuclear matter. We find their structure using realistic equations of state, robustly modified based on first-principle quantum chromodynamic calculations. We predict their detectability with gravitational waves and binary pulsars, suggesting an impressive discovery potential and ability to probe the dark sector.
Observations of thermal radiation from neutron stars can potentially provide information about the states of supranuclear matter in the interiors of these stars with the aid of the theory of neutron-star thermal evolution. We review the basics of thi s theory for isolated neutron stars with strong magnetic fields, including most relevant thermodynamic and kinetic properties in the stellar core, crust, and blanketing envelopes.
A phase of strong interacting matter with deconfined quarks is expected in the core of massive neutron stars. We investigate the quark deconfinement phase transition in cold (T = 0) and hot beta-stable hadronic matter. Assuming a first order phase tr ansition, we calculate and compare the nucleation rate and the nucleation time due to quantum and thermal nucleation mechanisms. We show that above a threshold value of the central pressure a pure hadronic star (HS) (i.e. a compact star with no fraction of deconfined quark matter) is metastable to the conversion to a quark star (QS) (i.e. a hybrid star or a strange star). This process liberates an enormous amount of energy, of the order of 10^{53}~erg, which causes a powerful neutrino burst, likely accompanied by intense gravitational waves emission, and possibly by a second delayed (with respect to the supernova explosion forming the HS) explosion which could be the energy source of a powerful gamma-ray burst (GRB). This stellar conversion process populates the QS branch of compact stars, thus one has in the Universe two coexisting families of compact stars: pure hadronic stars and quark stars. We introduce the concept of critical mass M_{cr} for cold HSs and proto-hadronic stars (PHSs), and the concept of limiting conversion temperature for PHSs. We show that PHSs with a mass M < M_{cr} could survive the early stages of their evolution without decaying to QSs. Finally, we discuss the possible evolutionary paths of proto-hadronic stars.
142 - Nanda Rea 2012
Among the many different classes of stellar objects, neutron stars provide a unique environment where we can test (at the same time) our understanding of matter with extreme density, temperature, and magnetic field. In particular, the properties of m atter under the influence of magnetic fields and the role of electromagnetism in physical processes are key areas of research in physics. However, despite decades of research, our limited knowledge on the physics of strong magnetic fields is clear: we only need to note that the strongest steady magnetic field achieved in terrestrial labs is some millions of Gauss, only thousands of times stronger than a common refrigerator magnet. In this general context, I will review here the state of the art of our research on the most magnetic objects in the Universe, a small sample of neutron stars called magnetars. The study of the large high-energy emission, and the flares from these strongly magnetized (~10^{15} Gauss) neutron stars is providing crucial information about the physics involved at these extremes conditions, and favoring us with many unexpected surprises.
140 - C. Abel 2020
It has been proposed that there could be a mirror copy of the standard model particles, restoring the parity symmetry in the weak interaction on the global level. Oscillations between a neutral standard model particle, such as the neutron, and its mi rror counterpart could potentially answer various standing issues in physics today. Astrophysical studies and terrestrial experiments led by ultracold neutron storage measurements have investigated neutron to mirror-neutron oscillations and imposed constraints on the theoretical parameters. Recently, further analysis of these ultracold neutron storage experiments has yielded statistically significant anomalous signals that may be interpreted as neutron to mirror-neutron oscillations, assuming nonzero mirror magnetic fields. The neutron electric dipole moment collaboration performed a dedicated search at the Paul Scherrer Institute and found no evidence of neutron to mirror-neutron oscillations. Thereby, the following new lower limits on the oscillation time were obtained: $tau_{nn} > 352~$s at $B=0$ (95% C.L.), $tau_{nn} > 6~text{s}$ for all $0.4~mutext{T}<B<25.7~mutext{T}$ (95% C.L.), and $tau_{nn}/sqrt{cosbeta}>9~text{s}$ for all $5.0~mutext{T}<B<25.4~mutext{T}$ (95% C.L.), where $beta$ is the fixed angle between the applied magnetic field and the local mirror magnetic field which is assumed to be bound to the Earth. These new constraints are the best measured so far around $Bsim10~mu$T, and $Bsim20~mu$T.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا