ترغب بنشر مسار تعليمي؟ اضغط هنا

Reinforcement Learning with Efficient Active Feature Acquisition

96   0   0.0 ( 0 )
 نشر من قبل Hayan Yin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Solving real-life sequential decision making problems under partial observability involves an exploration-exploitation problem. To be successful, an agent needs to efficiently gather valuable information about the state of the world for making rewarding decisions. However, in real-life, acquiring valuable information is often highly costly, e.g., in the medical domain, information acquisition might correspond to performing a medical test on a patient. This poses a significant challenge for the agent to perform optimally for the task while reducing the cost for information acquisition. In this paper, we propose a model-based reinforcement learning framework that learns an active feature acquisition policy to solve the exploration-exploitation problem during its execution. Key to the success is a novel sequential variational auto-encoder that learns high-quality representations from partially observed states, which are then used by the policy to maximize the task reward in a cost efficient manner. We demonstrate the efficacy of our proposed framework in a control domain as well as using a medical simulator. In both tasks, our proposed method outperforms conventional baselines and results in policies with greater cost efficiency.

قيم البحث

اقرأ أيضاً

Modern tasks in reinforcement learning have large state and action spaces. To deal with them efficiently, one often uses predefined feature mapping to represent states and actions in a low-dimensional space. In this paper, we study reinforcement lear ning for discounted Markov Decision Processes (MDPs), where the transition kernel can be parameterized as a linear function of certain feature mapping. We propose a novel algorithm that makes use of the feature mapping and obtains a $tilde O(dsqrt{T}/(1-gamma)^2)$ regret, where $d$ is the dimension of the feature space, $T$ is the time horizon and $gamma$ is the discount factor of the MDP. To the best of our knowledge, this is the first polynomial regret bound without accessing the generative model or making strong assumptions such as ergodicity of the MDP. By constructing a special class of MDPs, we also show that for any algorithms, the regret is lower bounded by $Omega(dsqrt{T}/(1-gamma)^{1.5})$. Our upper and lower bound results together suggest that the proposed reinforcement learning algorithm is near-optimal up to a $(1-gamma)^{-0.5}$ factor.
Feature missing is a serious problem in many applications, which may lead to low quality of training data and further significantly degrade the learning performance. While feature acquisition usually involves special devices or complex process, it is expensive to acquire all feature values for the whole dataset. On the other hand, features may be correlated with each other, and some values may be recovered from the others. It is thus important to decide which features are most informative for recovering the other features as well as improving the learning performance. In this paper, we try to train an effective classification model with least acquisition cost by jointly performing active feature querying and supervised matrix completion. When completing the feature matrix, a novel target function is proposed to simultaneously minimize the reconstruction error on observed entries and the supervised loss on training data. When querying the feature value, the most uncertain entry is actively selected based on the variance of previous iterations. In addition, a bi-objective optimization method is presented for cost-aware active selection when features bear different acquisition costs. The effectiveness of the proposed approach is well validated by both theoretical analysis and experimental study.
61 - Yang Li , Siyuan Shan , Qin Liu 2021
Truly intelligent systems are expected to make critical decisions with incomplete and uncertain data. Active feature acquisition (AFA), where features are sequentially acquired to improve the prediction, is a step towards this goal. However, current AFA models all deal with a small set of candidate features and have difficulty scaling to a large feature space. Moreover, they are ignorant about the valid domains where they can predict confidently, thus they can be vulnerable to out-of-distribution (OOD) inputs. In order to remedy these deficiencies and bring AFA models closer to practical use, we propose several techniques to advance the current AFA approaches. Our framework can easily handle a large number of features using a hierarchical acquisition policy and is more robust to OOD inputs with the help of an OOD detector for partially observed data. Extensive experiments demonstrate the efficacy of our framework over strong baselines.
The central tenet of reinforcement learning (RL) is that agents seek to maximize the sum of cumulative rewards. In contrast, active inference, an emerging framework within cognitive and computational neuroscience, proposes that agents act to maximize the evidence for a biased generative model. Here, we illustrate how ideas from active inference can augment traditional RL approaches by (i) furnishing an inherent balance of exploration and exploitation, and (ii) providing a more flexible conceptualization of reward. Inspired by active inference, we develop and implement a novel objective for decision making, which we term the free energy of the expected future. We demonstrate that the resulting algorithm successfully balances exploration and exploitation, simultaneously achieving robust performance on several challenging RL benchmarks with sparse, well-shaped, and no rewards.
We consider the problem where $M$ agents interact with $M$ identical and independent environments with $S$ states and $A$ actions using reinforcement learning for $T$ rounds. The agents share their data with a central server to minimize their regret. We aim to find an algorithm that allows the agents to minimize the regret with infrequent communication rounds. We provide NAM which runs at each agent and prove that the total cumulative regret of $M$ agents is upper bounded as $Tilde{O}(DSsqrt{MAT})$ for a Markov Decision Process with diameter $D$, number of states $S$, and number of actions $A$. The agents synchronize after their visitations to any state-action pair exceeds a certain threshold. Using this, we obtain a bound of $Oleft(MSAlog(MT)right)$ on the total number of communications rounds. Finally, we evaluate the algorithm against multiple environments and demonstrate that the proposed algorithm performs at par with an always communication version of the UCRL2 algorithm, while with significantly lower communication.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا