ﻻ يوجد ملخص باللغة العربية
Expanded porphyrin-based (Hexaphyrins) sensitizers are promising due to their excellent light harvesting feature in dye-sensitized solar cell (DSSC). We calculated the low-lying excitations of expanded porphyrins (EPs) as hexaphyrin and core modified hexaphyrin structures using Time-Dependent Density Functional Theory. Our calculation showed the EPs (both hexaphyrin and core modified hexaphyrin) have broad range of absorption band suitable for harvesting the visible and near infrared region of solar spectrum. All EPs studied here satisfy the energy condition of singlet fission (SF). SF is the process in which the theoretical limit of Shockley-Quiesser (SQ) (33%) can be overcome in single junction solar cell. The non-linear optical properties like first hyper polarizability $beta$ and second order hyper polarizability $gamma$ were calculated using coupled perturbed Hartree-Fock approach. From the second order NLO properties we carried out degenerate four wave mixing (DFWM) component ($gamma^{(2)}(-omega;omega,omega,-omega$)) and finally quadratic non linear refractive indices of these EPs are calculated. Calculation showed EPs are promising as organic dye for the opto-electronic applications and useful for high efficiency DSSC and also useful for potential NLO materials as their hyper polarizabilities showed higher order non linearities.
Black phosphorus (BP) is an emerging two-dimensional semiconducting material with great potential for nanoelectronic and nanophotonic applications, especially owing to its unique anisotropic electrical and optical properties. Many theoretical studies
The optical conductivity is the basic defining property of materials characterizing the current response toward time-dependent electric fields. In this work, following the approach of Kubos response theory, we study the general properties of the nonl
We simulate the optical and electrical responses in gallium-doped graphene. Using density functional theory with a local density approximation, we simlutate the electronic band structure and show the effects of impurity doping (0-3.91%) in graphene o
In several experiments involving material background, it has been observed that the Chu, Einstein-Laub and Ampere formulations of optical force lead to either different optical forces or wrong total optical force. In order to identify the exact reaso
Investigations of the optical response of subwavelength structure arrays milled into thin metal films has revealed surprising phenomena including reports of unexpectedly high transmission of light. Many studies have interpreted the optical coupling t