ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Investigation of the Birefringent Optical Properties of Black Phosphorus with Picosecond Interferometry

249   0   0.0 ( 0 )
 نشر من قبل Jie Zhu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Black phosphorus (BP) is an emerging two-dimensional semiconducting material with great potential for nanoelectronic and nanophotonic applications, especially owing to its unique anisotropic electrical and optical properties. Many theoretical studies have predicted the anisotropic optical properties of BP, but the direct experimental quantification remains challenging. The difficulties stem from the ease of BPs degradation when exposed to air in ambient conditions, and from the indirect nature of conventional approaches that are subject to large measurement uncertainties. This work reports a direct investigation of the birefringent optical constants of micrometer-thick BP samples with picosecond (ps) interferometry, over the wavelength range from 780 to 890 nm. In this ps-interferometry approach, an ultrathin (5 nm) platinum layer for launching acoustic waves naturally protects the BP flake from degradation. The birefringent optical constants of BP for light polarization along the two primary crystalline orientations, zigzag and armchair, are directly obtained via fitting the attenuated Brillouin scattering signals. A bi-exponential model is further proposed to analyze the BS signals for a random incident light polarization. The BP experimental results and the associated measurement sensitivity analysis demonstrate the reliability and accuracy of the ps-interferometry approach for capturing the polarization-dependent optical properties of birefringent materials.



قيم البحث

اقرأ أيضاً

101 - Sumit Naskar , Mousumi Das 2020
Expanded porphyrin-based (Hexaphyrins) sensitizers are promising due to their excellent light harvesting feature in dye-sensitized solar cell (DSSC). We calculated the low-lying excitations of expanded porphyrins (EPs) as hexaphyrin and core modified hexaphyrin structures using Time-Dependent Density Functional Theory. Our calculation showed the EPs (both hexaphyrin and core modified hexaphyrin) have broad range of absorption band suitable for harvesting the visible and near infrared region of solar spectrum. All EPs studied here satisfy the energy condition of singlet fission (SF). SF is the process in which the theoretical limit of Shockley-Quiesser (SQ) (33%) can be overcome in single junction solar cell. The non-linear optical properties like first hyper polarizability $beta$ and second order hyper polarizability $gamma$ were calculated using coupled perturbed Hartree-Fock approach. From the second order NLO properties we carried out degenerate four wave mixing (DFWM) component ($gamma^{(2)}(-omega;omega,omega,-omega$)) and finally quadratic non linear refractive indices of these EPs are calculated. Calculation showed EPs are promising as organic dye for the opto-electronic applications and useful for high efficiency DSSC and also useful for potential NLO materials as their hyper polarizabilities showed higher order non linearities.
239 - Ying-Ying Li , Bo Gao , Ying Han 2021
The tunable bandgap from 0.3 eV to 2 eV of black phosphorus (BP) makes it to fill the gap in graphene. When studying the properties of BP more comprehensive, scientists have discovered that many two-dimensional materials, such as tellurene, antimonen e, bismuthene, indium selenide and tin sulfide, have similar structures and properties to black phosphorus thus called black phosphorus analogs. In this review, we briefly introduce preparation methods of black phosphorus and its analogs, with emphasis on the method of mechanical exfoliation (ME), liquid phase exfoliation (LPE) and chemical vapor deposition (CVD). And their characterization and properties according to their classification of single-element materials and multi-element materials are described. We focus on the performance of passively mode-locked fiber lasers using BP and its analogs as saturable absorbers (SA) and demonstrated this part through classification of working wavelength. Finally, we introduce the application of BP and its analogs, and discuss their future research prospects.
Cathodoluminescence (CL) imaging spectroscopy is an important technique to understand resonant behavior of optical nanoantennas. We report high-resolution CL spectroscopy of triangular gold nanoantennas designed with near-vacuum effective index and v ery small metal-substrate interface. This design helped in addressing issues related to background luminescence and shifting of dipole modes beyond visible spectrum. Spatial and spectral investigations of various plasmonic modes are reported. Out-of-plane dipole modes excited with vertically illuminated electron beam showed high-contrast tip illumination in panchromatic imaging. By tilting the nanostructures during fabrication, in-plane dipole modes of antennas were excited. Finite-difference time-domain simulations for electron and optical excitations of different modes showed excellent agreement with experimental results. Our approach of efficiently exciting antenna modes by using low index substrates is confirmed both with experiments and numerical simulations. This should provide further insights into better understanding of optical antennas for various applications.
This paper describes the demonstration of linearly polarized picosecond pulse shaping with variable profiles including symmetric and non-symmetric intensity distributions. Important characteristics such as stability and transmission were studied, res ulting in highly reliable performance of this fan-type birefringent shaping system. This variable temporal shaping technique is applicable over a wide range of laser parameters and may lead to new opportunities for many potential applications. A new double-pass variable temporal shaping method that significantly reduces the required crystal quantity is also proposed in this paper.
129 - L. Persano 2018
3D printing technologies are currently enabling the fabrication of objects with complex architectures and tailored properties. In such framework, the production of 3D optical structures, which are typically based on optical transparent matrices, opti onally doped with active molecular compounds and nanoparticles, is still limited by the poor uniformity of the printed structures. Both bulk inhomogeneities and surface roughness of the printed structures can negatively affect the propagation of light in 3D printed optical components. Here we investigate photopolymerization-based printing processes by laser confocal microscopy. The experimental method we developed allows the printing process to be investigated in-situ, with microscale spatial resolution, and in real-time. The modelling of the photo-polymerization kinetics allows the different polymerization regimes to be investigated and the influence of process variables to be rationalized. In addition, the origin of the factors limiting light propagation in printed materials are rationalized, with the aim of envisaging effective experimental strategies to improve optical properties of printed materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا