ﻻ يوجد ملخص باللغة العربية
The optical conductivity is the basic defining property of materials characterizing the current response toward time-dependent electric fields. In this work, following the approach of Kubos response theory, we study the general properties of the nonlinear optical conductivities of quantum many-body systems both in equilibrium and non-equilibrium. We obtain an expression of the second- and the third-order optical conductivity in terms of correlation functions and present a perturbative proof of the generalized Kohn formula proposed recently. We also discuss a generalization of the $f$-sum rule to a non-equilibrium setting by focusing on the instantaneous response.
We predict the non-linear non-equilibrium response of a magnetolyte, the Coulomb fluid of magnetic monopoles in spin ice. This involves an increase of the monopole density due to the second Wien effect---a universal and robust enhancement for Coulomb
Statistical analysis of the eigenfunctions of the Anderson tight-binding model with on-site disorder on regular random graphs strongly suggests that the extended states are multifractal at any finite disorder. The spectrum of fractal dimensions $f(al
Using a family of modified Weibull distributions, encompassing both sub-exponentials and super-exponentials, to parameterize the marginal distributions of asset returns and their natural multivariate generalizations, we give exact formulas for the ta
We introduce a new two-dimensional model with diagonal four spin exchange and an exactly knownground-state. Using variational ansaetze and exact diagonalisation we calculate upper and lower bounds for the critical coupling of the model. Both for this
Thermodynamics of a spin-1 Bose gas with ferromagnetic interactions are investigated via the mean-field theory. It is apparently shown in the specific heat curve that the system undergoes two phase transitions, the ferromagnetic transition and the Bo