ﻻ يوجد ملخص باللغة العربية
Soon after its theoretical prediction, striped-density states in the presence of synthetic spin-orbit coupling were realized in Bose-Einstein condensates of ultracold neutral atoms [J.-R. Li et al., Nature textbf{543}, 91 (2017)]. The achievement opens avenues to explore the interplay of superfluidity and crystalline order in the search for supersolid features and materials. The system considered is essentially made of two linearly coupled Bose-Einstein condensates, that is a pseudo-spin-$1/2$ system, subject to a spin-dependent gauge field $sigma_z hbar k_ell$. Under these conditions the stripe phase is achieved when the linear coupling $hbarOmega/2$ is small against the gauge energy $mOmega/hbar k_ell^2<1$ . The resulting density stripes have been interpreted as a standing-wave, interference pattern with approximate wavenumber $2k_ell$. Here, we show that the emergence of the stripe phase is induced by an array of Josephson vortices living in the junction defined by the linear coupling. As happens in superconducting junctions subject to external magnetic fields, a vortex array is the natural response of the superfluid system to the presence of a gauge field. Also similar to superconductors, the Josephson currents and their associated vortices can be present as a metastable state in the absence of gauge field. We provide closed-form solutions to the 1D mean field equations that account for such vortex arrays. The underlying Josephson currents coincide with the analytical solutions to the sine-Gordon equation for the relative phase of superconducting junctions [C. Owen and D. Scalapino, Phys. Rev. textbf{164}, 538 (1967)].
Recently, stripe phases in spin-orbit coupled Bose-Einstein condensates (BECs) have attracted much attention since they are identified as supersolid phases. In this paper, we exploit experimentally reachable parameters and show theoretically that ann
The dynamic behavior of vortex pairs in two-component coherently (Rabi) coupled Bose-Einstein condensates is investigated in the presence of harmonic trapping. We discuss the role of the surface tension associated with the domain wall connecting two
We study the establishment of vortex entanglement in remote and weakly interacting Bose Einstein condensates. We consider a two-mode photonic resource entangled in its orbital angular momentum (OAM) degree of freedom and, by exploiting the process of
Long-lived, spatially localized, and temporally oscillating nonlinear excitations are predicted by numerical simulation of coupled Gross-Pitaevskii equations. These oscillons closely resemble the time-periodic breather solutions of the sine-Gordon eq
We report on the creation of three-vortex clusters in a $^{87}Rb$ Bose-Einstein condensate by oscillatory excitation of the condensate. This procedure can create vortices of both circulation, so that we are able to create several types of vortex clus