ترغب بنشر مسار تعليمي؟ اضغط هنا

Visible stripe phases in spin-orbital-angular-momentum coupled Bose-Einstein condensates

94   0   0.0 ( 0 )
 نشر من قبل Yu-Ju Lin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, stripe phases in spin-orbit coupled Bose-Einstein condensates (BECs) have attracted much attention since they are identified as supersolid phases. In this paper, we exploit experimentally reachable parameters and show theoretically that annular stripe phases with large stripe spacing and high stripe contrast can be achieved in spin-orbital-angular-momentum coupled (SOAMC) BECs. In addition to using Gross-Pitaevskii numerical simulations, we develop a variational ansatz that captures the essential interaction effects to first order, which are not present in the ansatz employed in previous literature. Our work should open the possibility toward directly observing stripe phases in SOAMC BECs in experiments.



قيم البحث

اقرأ أيضاً

Soon after its theoretical prediction, striped-density states in the presence of synthetic spin-orbit coupling were realized in Bose-Einstein condensates of ultracold neutral atoms [J.-R. Li et al., Nature textbf{543}, 91 (2017)]. The achievement ope ns avenues to explore the interplay of superfluidity and crystalline order in the search for supersolid features and materials. The system considered is essentially made of two linearly coupled Bose-Einstein condensates, that is a pseudo-spin-$1/2$ system, subject to a spin-dependent gauge field $sigma_z hbar k_ell$. Under these conditions the stripe phase is achieved when the linear coupling $hbarOmega/2$ is small against the gauge energy $mOmega/hbar k_ell^2<1$ . The resulting density stripes have been interpreted as a standing-wave, interference pattern with approximate wavenumber $2k_ell$. Here, we show that the emergence of the stripe phase is induced by an array of Josephson vortices living in the junction defined by the linear coupling. As happens in superconducting junctions subject to external magnetic fields, a vortex array is the natural response of the superfluid system to the presence of a gauge field. Also similar to superconductors, the Josephson currents and their associated vortices can be present as a metastable state in the absence of gauge field. We provide closed-form solutions to the 1D mean field equations that account for such vortex arrays. The underlying Josephson currents coincide with the analytical solutions to the sine-Gordon equation for the relative phase of superconducting junctions [C. Owen and D. Scalapino, Phys. Rev. textbf{164}, 538 (1967)].
Weak measurement in tandem with real-time feedback control is a new route toward engineering novel non-equilibrium quantum matter. Here we develop a theoretical toolbox for quantum feedback control of multicomponent Bose-Einstein condensates (BECs) u sing backaction-limited weak measurements in conjunction with spatially resolved feedback. Feedback in the form of a single-particle potential can introduce effective interactions that enter into the stochastic equation governing system dynamics. The effective interactions are tunable and can be made analogous to Feshbach resonances -- spin-independent and spin-dependent -- but without changing atomic scattering parameters. Feedback cooling prevents runaway heating due to measurement backaction and we present an analytical model to explain its effectiveness. We showcase our toolbox by studying a two-component BEC using a stochastic mean-field theory, where feedback induces a phase transition between easy-axis ferromagnet and spin-disordered paramagnet phases. We present the steady-state phase diagram as a function of intrinsic and effective spin-dependent interaction strengths. Our result demonstrates that closed-loop quantum control of Bose-Einstein condensates is a powerful new tool for quantum engineering in cold-atom systems.
We have computed phase diagrams for rotating spin-1 Bose-Einstein condensates with long-range magnetic dipole-dipole interactions. Spin textures including vortex sheets, staggered half-quantum- and skyrmion vortex lattices and higher order topologica l defects have been found. These systems exhibit both superfluidity and magnetic crystalline ordering and they could be realized experimentally by imparting angular momentum in the condensate.
In this paper, we show that for sufficiently strong atomic interactions, there exist analytical solutions of current-carrying nonlinear Bloch states at the Brillouin zone edge to the model of spin-orbit-coupled Bose-Einstein condensates (BECs) with s ymmetric spin interaction loaded into optical lattices. These simple but generic exact solutions provide an analytical demonstration of some intriguing properties which have neither an analog in the regular BEC lattice systems nor in the uniform spin-orbit-coupled BEC systems. It is an analytical example for understanding the superfluid and other related properties of the spin-orbit-coupled BEC lattice systems.
We study the establishment of vortex entanglement in remote and weakly interacting Bose Einstein condensates. We consider a two-mode photonic resource entangled in its orbital angular momentum (OAM) degree of freedom and, by exploiting the process of light-to-BEC OAM transfer, demonstrate that such entanglement can be efficiently passed to the matter-like systems. Our proposal thus represents a building block for novel low-dissipation and long-memory communication channels based on OAM. We discuss issues of practical realizability, stressing the feasibility of our scheme and present an operative technique for the indirect inference of the set vortex entanglement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا